• 懒惰学习在训练阶段只把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理,如k近邻学习(kNN).急切学习则在训练阶段就对样本进行学习处理.
  • 若任意测试样本x附近任意小的δ距离范围内总能找到一个训练样本,即训练样本的采样密度足够大,或称为密采样,则最近邻分类器(1NN)的泛化错误率不超过贝叶斯最优分类器的错误率的两倍.
  • 在高维情形下出现的数据样本稀疏,距离计算困难等问题称为"维数灾难".处理高维数据的两大主流技术是降维特征选择.
  • 降维亦称维数约简,即通过某种数学变换将原始高维属性空间转变为一个低维子空间.能进行降维的原因是与学习任务密切相关的或许仅仅是数据样本的某个低维分布,而不是原始高维空间的样本点.
  • 多维缩放是一种经典的降维方法.它使原始空间中样本之间的距离在低维空间中得以保持.
  • 主成分分析(PCA)是最常用的一种降维方法.如果要用一个超平面对所有样本进行恰当的表达,这个超平面应该具有最近重构性最大可分性两种性质.基于这两种性质可以得到主成分分析的等价推导.PCA可以使样本的采样密度增大,同时在一定程度上起到去噪的效果.
  • 线性降维方法有可能丢失低维结构,因此要引入非线性降维.一种常用方法是基于核技巧对线性降维方法进行核化.如核主成分分析(KPCA).
  • 流形学习(manifold learning)是一类借鉴了拓扑流形概念的降维方法.流形在局部具有欧氏空间性质.将低维流形嵌入到高维空间中,可以容易地在局部建立降维映射关系,再设法将局部映射关系推广到全局.常用的流形学习方法有等度量映射局部线性嵌入等.
  • 对高维数据进行降维的主要目的是找到一个合适的低维空间.事实上,每个空间对应了在样本属性上定义的一个距离度量,度量学习直接尝试学习出一个合适的距离度量.常用方法有近邻成分分析(NCA).