452. 用最少数量的箭引爆气球
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。

一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。

示例 1:

输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:

输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
示例 3:

输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
示例 4:

输入:points = [[1,2]]
输出:1
示例 5:

输入:points = [[2,3],[2,3]]
输出:1
解题思路
该问题还是求解不重叠的区间数-只是边界相等也算重叠
(重叠的就一定可以和别的空间一块消除)
在排序的时候需要注意溢出问题
图片说明

class Solution {
    public int findMinArrowShots(int[][] points) {
        int n=points.length;
        if(n==0) return 0;
        Arrays.sort(points,new Comparator<int[]>(){
            public int compare(int[] a,int[] b){
                if (a[1] > b[1]) {
                    return 1;
                } else if (a[1] < b[1]) {
                    return -1;
                } else {
                    return 0;
                }
                //[[-2147483646,-2147483645],[2147483646,2147483647]]会溢出,所以需要判断大小,不能直接相减
                //return a[1]-b[1];
            }
        });
        int count=1;
        int x_end=points[0][1];
        for(int[] point:points){
            if(point[0]>x_end){
                count++;
                x_end=point[1];
            }
        }
        return count;
    }
}