题目:
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。
两个相邻元素间的距离为 1
题解:
对于矩阵中的任意一个 1 以及一个 0,我们如何从这个 1 到达 0 并且距离最短呢?根据上面的做法,我们可以从 1 开始,先在水平方向移动,直到与 0 在同一列,随后再在竖直方向上移动,直到到达 0 的位置。这样一来,从一个固定的 1 走到任意一个 0,在距离最短的前提下可能有四种方法:
只有 水平向左移动 和 竖直向上移动;
只有 水平向左移动 和 竖直向下移动;
只有 水平向右移动 和 竖直向上移动;
只有 水平向右移动 和 竖直向下移动。
然后根据这四种情况作出四种方向的循环:
class Solution {
static int [][]dir={
{-1,0},{1,0},{0,-1},{0,1}};
public int[][] updateMatrix(int[][] mat) {
int m=mat.length,n=mat[0].length;//如果合理-1,那么下面的for循环那里就要<=
// 初始化动态规划的数组,所有的距离值都设置为一个很大的数
int[][]dist=new int[m][n];
for(int i=0;i<m;i++){
Arrays.fill(dist[i],Integer.MAX_VALUE/2);
}
// 如果 (i, j) 的元素为 0,那么距离为 0
for(int i=0;i<m;i++){//上面没有——1,这里就是<
for(int j=0;j<n;j++){
if(mat[i][j]==0){
dist[i][j]=0;
}
}
}
// 只有 水平向左移动 和 竖直向上移动,注意动态规划的计算顺序
for(int i=0;i<m;++i){
for(int j=0;j<n;++j){
if(i-1>=0){
dist[i][j]=Math.min(dist[i][j],dist[i-1][j]+1);
}
if(j-1>=0){
dist[i][j]=Math.min(dist[i][j],dist[i][j-1]+1);
}
}
}
// 只有 水平向左移动 和 竖直向下移动,注意动态规划的计算顺序
for(int i=m-1;i>=0;--i){
for(int j=0;j<n;++j){
if(i+1<m){
dist[i][j]=Math.min(dist[i][j],dist[i+1][j]+1);
}
if(j-1>=0){
dist[i][j]=Math.min(dist[i][j],dist[i][j-1]+1);
}
}
}
// 只有 水平向右移动 和 竖直向上移动,注意动态规划的计算顺序
for(int i=0;i<m;++i){
for(int j=n-1;j>=0;--j){
if(i-1>=0){
dist[i][j]=Math.min(dist[i][j],dist[i-1][j]+1);
}
if(j+1<n){
dist[i][j]=Math.min(dist[i][j],dist[i][j+1]+1);
}
}
}
// 只有 水平向右移动 和 竖直向下移动,注意动态规划的计算顺序
for(int i=m-1;i>=0;--i){
for(int j=n-1;j>=0;--j){
if(i+1<m){
dist[i][j]=Math.min(dist[i][j],dist[i+1][j]+1);
}
if(j+1<n){
dist[i][j]=Math.min(dist[i][j],dist[i][j+1]+1);
}
}
}
return dist;
}
}
题目来自力扣542题.