题目:

You have array of n numbers a1,a2,…,an.
Rearrange these numbers to satisfy |a1−a2|≤|a2−a3|≤…≤|an−1−an|, where |x| denotes absolute value of x. It’s always possible to find such rearrangement.
Note that all numbers in a are not necessarily different. In other words, some numbers of a may be same.
You have to answer independent t test cases.

Input
The first line contains a single integer t (1≤t≤104) — the number of test cases.
The first line of each test case contains single integer n (3≤n≤105) — the length of array a. It is guaranteed that the sum of values of n over all test cases in the input does not exceed 105.
The second line of each test case contains n integers a1,a2,…,an (−109≤ai≤109).

Output
For each test case, print the rearranged version of array a which satisfies given condition. If there are multiple valid rearrangements, print any of them.

输入:
2
6
5 -2 4 8 6 5
4
8 1 4 2
输出:
5 5 4 6 8 -2
1 2 4 8

题意:
给定一个数组,让你重新进行排序,使得每两项相邻差的绝对值递增。

思路

对数组进行排序,跳着放,就是放一个最大的,然后再放一个最小的,再放一个次大的,放一个次小的、、、、、、这样操作之后拿到的数组他们的差值绝对值是递减的,只需要将这个数组倒置即可。

AC代码:

#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 1e5 + 15;
int a[maxn], b[maxn];
int main()
{
	int t; cin >> t;
	while (t--) {
		int n; cin >> n;
		for (int i = 1; i <= n; i++)
			cin >> a[i];
		sort(a + 1, a + n + 1);
		int j = 0;
		for (int i = 1; i <= n / 2; i++) {
			b[j++] = a[n + 1 - i];
			b[j++] = a[i];
		}
		if (n & 1)
			b[j++] = a[n / 2 + 1];
		for (int i = n - 1; i >= 0; i--)
			cout << b[i] << " ";
		cout << endl;

	}
	return 0;
}