import numpy as np import math def softmax(scores: list[float]) -> list[float]: exp_scores = [] for s in scores: exp_scores.append(math.e ** s) probabilities = [] for e in exp_scores: probabilities.append(round(e / np.sum(exp_scores),4)) return probabilities if __name__ == "__main__": scores = np.array(eval(input())) print(softmax(scores))