注意到M={{10}^9+7}是质数,且a\not\equiv0\mod M,故可以使用费马小定理(a^{M-1}\equiv 1\mod M),设b^c=d,则a^d=a^{d\%\left(M-1\right)+\left\lfloor\frac d{M-1}\right\rfloor\left(M-1\right)}\equiv a^{d\%\left(M-1\right)}\mod M。而b^c\%\left(M-1\right)也可通过快速幂求出。算法需要两次快速幂,故时间复杂度为O\!\left(\log c+\log M\right)

import sys

MOD = 10 ** 9 + 7

sys.stdin.readline()
for line in sys.stdin:
    a, b, c = map(int, line.split())
    print(pow(a, pow(b, c, MOD - 1), MOD))