1.高斯噪声函数
//将范围限制在0~255之间
def thresholdfn(pv):
if pv > 255:
pv = 255
elif pv < 0:
pv = 0
else:
return pv
//定义高斯噪声函数
def gaussian_demo(image):
h, w, c = image.shape
for row in range(h):
for col in range(w):
s = np.random.normal(0, 20, 3)
b = image[row, col, 0]
g = image[row, col, 1]
r = image[row, col, 2]
b = thresholdfn(b + s[0])
g = thresholdfn(g + s[1])
r = thresholdfn(r + s[2])
cv.imshow('gaussian_demo', image)
2.测试程序
image = cv.imread('./data/lena.jpg', 1)
cv.imshow('source image', image)
t1 = cv.getTickCount()
gaussian_demo(image)
t2 = cv.getTickCount()
time = (t2 - t1) / cv.getTickFrequency()
print(time)
dst = cv.GaussianBlur(image, (0, 0), 20)
cv.imshow('GaussianBlur image', dst)
cv.waitKey(0)
cv.destroyAllWindows()
测试结果:
time: 7.665542534869055