题目描述:力扣
解题思路:
(一)
我们将上述问题建模为函数 f(n, m),该函数的返回值为最终留下的元素的序号。
首先,长度为 n 的序列会先删除第 m % n 个元素,然后剩下一个长度为 n - 1 的序列。那么,我们可以递归地求解 f(n - 1, m),就可以知道对于剩下的 n - 1 个元素,最终会留下第几个元素,我们设答案为 x = f(n - 1, m)。
由于我们删除了第 m % n 个元素,将序列的长度变为 n - 1。当我们知道了 f(n - 1, m) 对应的答案 x 之后,我们也就可以知道,长度为 n 的序列最后一个删除的元素,应当是从 m % n 开始数的第 x 个元素。因此有 f(n - 1, m) = (m % n + x) % n = (m + x) % n。
我们递归计算 f(n, m), f(n - 1, m), f(n - 2, m), ... 直到递归的终点 f(1, m)。当序列长度为 1 时,一定会留下唯一的那个元素,它的编号为 0。
下面的代码实现了上述的递归函数。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/solution/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-by-lee/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。(二)
约瑟夫环问题
很明显我们每次删除的是第 mm 个数字,我都标红了。
第一轮是 [0, 1, 2, 3, 4] ,所以是 [0, 1, 2, 3, 4] 这个数组的多个复制。这一轮 2 删除了。
第二轮开始时,从 3 开始,所以是 [3, 4, 0, 1] 这个数组的多个复制。这一轮 0 删除了。
第三轮开始时,从 1 开始,所以是 [1, 3, 4] 这个数组的多个复制。这一轮 4 删除了。
第四轮开始时,还是从 1 开始,所以是 [1, 3] 这个数组的多个复制。这一轮 1 删除了。
最后剩下的数字是 3。
图中的绿色的线指的是新的一轮的开头是怎么指定的,每次都是固定地向前移位 mm 个位置。
然后我们从最后剩下的 3 倒着看,我们可以反向推出这个数字在之前每个轮次的位置。
最后剩下的 3 的下标是 0。
第四轮反推,补上 mm 个位置,然后模上当时的数组大小 22,位置是(0 + 3) % 2 = 1。
第三轮反推,补上 mm 个位置,然后模上当时的数组大小 33,位置是(1 + 3) % 3 = 1。
第二轮反推,补上 mm 个位置,然后模上当时的数组大小 44,位置是(1 + 3) % 4 = 0。
第三轮反推,补上 mm 个位置,然后模上当时的数组大小 55,位置是(0 + 3) % 5 = 3。
所以最终剩下的数字的下标就是3。因为数组是从0开始的,所以最终的答案就是3。
总结一下反推的过程,就是 (当前index + m) % 上一轮剩余数字的个数。
代码就很简单了。
作者:sweetieeyi
链接:https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/solution/javajie-jue-yue-se-fu-huan-wen-ti-gao-su-ni-wei-sh/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。class Solution { public int lastRemaining(int n, int m) { int res = 0; for(int i=2; i<=n; i++){ res = (res+m)%i; } return res; } }