题目意思:
Solution
#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define mk(__x__,__y__) make_pair(__x__,__y__)
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int N = 300 + 7;
ll a[N][N];
ll dp[N][N];
int main() {
int n = read(), m = read();
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
a[i][j] = read();
for (int i = 1; i <= n; ++i)
sort(a[i] + 1, a[i] + 1 + m);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
a[i][j] += a[i][j - 1];
ms(dp, 0x3f);
dp[0][0] = 0;
for (int i = 1; i <= n; ++i)
for (int j = i; j <= min(n, i * m); ++j)
for (int k = i - 1; k <= min(n, min(j, (i - 1) * m)); ++k)
dp[i][j] = min(dp[i][j], dp[i - 1][k] + a[i][j - k] + (j - k) * (j - k));
print(dp[n][n]);
return 0;
}