F n+1颗线段树写法供参考
每个数组用一颗线段树维护min,再另开一颗线段树维护前i个数组的min
代码如下
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl "\n"
#define lowbit(x) x & (-x)
const int N = 1e5 + 10, M = 1010, mod = 998244353, inf = 2e9;
const double eps = 1e-9;
typedef pair<int, int> pt;
typedef long long ll;
typedef unsigned long long ull;
void pushup(vector<int> &tr, int p) {
tr[p] = min(tr[p * 2], tr[p * 2 + 1]);
}
void build(vector<int> &tr, int p, int l, int r, vector<int> &a) {
if (l == r) {
tr[p] = a[l];
return;
}
int mid = l + r >> 1;
build(tr, p * 2, l, mid, a);
build(tr, p * 2 + 1, mid + 1, r, a);
pushup(tr, p);
}
void modify(vector<int> &tr, int p, int l, int r, int x, int v) {
if (l == r) {
tr[p] = v;
return;
}
int mid = l + r >> 1;
if (x <= mid) modify(tr, p * 2, l, mid, x, v);
else modify(tr, p * 2 + 1, mid + 1, r, x, v);
pushup(tr, p);
}
int query(vector<int> &tr, int p, int l, int r, int x, int y) {
if (l > y || r < x) {
return (int)2e9;
}
if (l >= x && r <= y) {
return tr[p];
}
int mid = l + r >> 1;
return min(query(tr, p * 2, l, mid, x, y), query(tr, p * 2 + 1, mid + 1, r, x, y));
pushup(tr, p);
}
void solve() {
int n;
cin >> n;
vector<vector<int>> a(n + 1);
vector<vector<int>> tr(n + 1);
vector<int> sz(n + 1);
for (int i = 1; i <= n; i++) {
int m;
cin >> m;
a[i].resize(m + 1);
tr[i].resize((m + 1) * 4);
sz[i] = m;
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
}
build(tr[i], 1, 1, m, a[i]);
}
int q;
cin >> q;
vector<int> pre((n + 1) * 4, 2e9);
for (int i = 1; i <= n; i++) {
modify(pre, 1, 1, n, i, tr[i][1]);
}
while (q--) {
int op;
cin >> op;
if (op == 1) {
int i, j, x;
cin >> i >> j >> x;
modify(tr[i], 1, 1, sz[i], j, x);
modify(pre, 1, 1, n, i, tr[i][1]);
}
else {
int i;
cin >> i;
cout << query(pre, 1, 1, n, 1, i) << endl;
}
}
}
signed main() {
//freopen("title.in", "r", stdin);
//freopen("std.txt", "w", stdout);
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int t = 1;
//cin >> t;
while (t--) {
solve();
}
return 0;
}