#本题蕴含思想可用于所有进制转换,即“若任意情况,则以10进制为中介,转10则sum+pow求和,10转则取余并整除”
def zs(s): # 字母转数字
return ord(s) - 55
def sz(n): # 数字转字母
return chr(n + 55)
def z10(a, n): # a进制n 转 10进制
sum = 0
n = list(str(n))
for k in range(len(n)):
if ord(n[k]) in range(97, 123):
n[k] = n[k].upper()
for i in range(len(n)):
if ord(n[i]) in range(65, 91):
n[i] = str(zs(n[i]))
n.reverse()
for j in range(len(n)):
sum = sum + pow(int(a), j) * int(n[j])
return sum
def tz(b, n): # 10进制的n 转 b进制
a = []
n = int(n)
b = int(b)
while True:
a.append(n % b)
n = n // b
if n == 0:
break
for i in range(len(a)):
if a[i] > 9:
a[i] = sz(a[i])
a.reverse()
s = ""
for j in range(len(a)):
s = s + str(a[j])
return s
while True:
try:
s = list(input().split())
a = s[0]
n = s[1]
b = s[2]
print(tz(b, z10(a, n)))
except:
break