第一道数位dp
之前看了讲解视频,然后知道了数位dp的基本代码结构
主要是求一个dp推导,然后再特判最终情况。
这里的dp推导,不是直接循环将dp推导出来
(我看的视频里是用循环推导的dp)
这里面用循环的话,编码难度会很高
因此这里选择的是dfs记忆化递归!
然后,在特判最终情形就好了。
数为dp最为困难的就是dp的推导!!!
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
const int max_n = 120;
const int N = 14;
typedef long long ll;
ll f[N][max_n][max_n][max_n];
ll dfs(int pos, int tar, int red, int mod) {
if (f[pos][tar][red][mod] != -1)return f[pos][tar][red][mod];
if (pos == 1)return f[pos][tar][red][mod] = !(red | mod);
f[pos][tar][red][mod] = 0;
ll cur = 1;
for (int i = 1;i < pos - 1;++i)cur *= 10;
for (int i = 0;i <= red && i <= 9;++i) {
f[pos][tar][red][mod] += dfs(pos - 1, tar, red - i, (mod + cur * i % tar) % tar);
}return f[pos][tar][red][mod];
}
ll dp(ll n) {
if (!n)return 0;
vector<int> nums;
while (n) {
nums.push_back(n % 10);
n /= 10;
}
ll res = 0;
ll last = 0;
int sum = 0;
ll cur = 1;
for (int i = 1;i <= nums.size();++i)cur *= 10;
for (int i = nums.size() - 1;i >= 0;--i) {
cur /= 10;
int x = nums[i];
if (x) {
for (int y = 0;y < x;++y) {
for (int tar = max(1,sum + y);tar <= 108;++tar) {
res += dfs(i + 1, tar, tar - y - sum, (y * cur + last) % tar);
}
}
}
last += x * cur;
sum += x;
if (i == 0) {
res += (last % sum == 0);
}
}
return res;
}
int main() {
ios::sync_with_stdio(0);
for (int i = 0;i < N;++i)for (int j = 0;j < max_n;++j)for (int k = 0;k < max_n;++k)for (int o = 0;o < max_n;++o)f[i][j][k][o] = -1;
int t;cin >> t;
for (int i = 1;i <= t;++i) {
ll n;cin >> n;
cout << "Case " << i << ": " << dp(n) << endl;
}
}
京公网安备 11010502036488号