1. 愤怒的小鸟
来源:NOIP2016提高组 https://ac.nowcoder.com/acm/contest/264/C
算法知识点: 状态压缩DP
复杂度: )&preview=true)
解题思路:
一般抛物线方程:
题目中的抛物线有两个特点:
- 过原点, 即
- 开口向下,即
因此抛物线方程为:,有两个未知数,因此两点即可确定一条抛物线。
因此最多有 个不同的抛物线。接下来求出所有不同的抛物线,及其能覆盖的所有点的点集。
此时问题变成了经典的“重复覆盖问题”,即给定01矩阵,要求选择尽量少的行,将所有列覆盖住。
f[i] 表示当前已经覆盖的列是i时的最小行数。
转移时随便找到当前未被覆盖的某一列 ,然后枚举所有包含
的行
j来选择即可。
即:f[i | j] = min(f[i | j], f[i] + 1)。
C++ 代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#define x first
#define y second
using namespace std;
typedef pair<double, double> PDD;
const int N = 18, M = 1 << N;
const double eps = 1e-6;
int n, m;
PDD q[N];
int path[N][N];
int f[M];
int ulowbit[M];
int cmp(double x, double y)
{
if (fabs(x - y) <= eps) return 0;
if (x < y) return -1;
return 1;
}
int main()
{
int T;
scanf("%d", &T);
while (T -- )
{
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i ++ ) scanf("%lf%lf", &q[i].x, &q[i].y);
for (int i = 0; i + 1 < 1 << n; i ++ )
{
for (int j = 0; j < n; j ++ )
if (!(i >> j & 1))
{
ulowbit[i] = j;
break;
}
}
memset(path, 0, sizeof path);
for (int i = 0; i < n; i ++ )
{
path[i][i] = 1 << i;
for (int j = 0; j < n; j ++ )
{
if (!cmp(q[i].x, q[j].x)) continue;
double x1 = q[i].x, y1 = q[i].y, x2 = q[j].x, y2 = q[j].y;
double b = (y1 * x2 * x2 / x1 / x1 - y2) / (x2 * x2 / x1 - x2);
double a = (y1 - b * x1) / x1 / x1;
if (a > 0) continue;
int state = 0;
for (int k = 0; k < n; k ++ )
{
double x = q[k].x, y = q[k].y;
if (!cmp(y, a * x * x + b * x)) state += 1 << k;
}
path[i][j] = state;
}
}
memset(f, 0x3f, sizeof f);
f[0] = 0;
for (int i = 0; i + 1 < 1 << n; i ++ )
{
int x = ulowbit[i];
for (int j = 0; j < n; j ++ )
f[i | path[x][j]] = min(f[i | path[x][j]], f[i] + 1);
}
printf("%d\n", f[(1 << n) - 1]);
}
return 0;
}
2. 换教室
来源:NOIP2016提高组 https://ac.nowcoder.com/acm/contest/264/F
算法知识点: 数学期望,动态规划
复杂度: &preview=true)
解题思路:
状态表示:
f[i][j][0]表示前i个课程,申请换了j次,且最后一次没申请换的最小期望长度f[i][j][1]表示前i个课程,申请换了j次,且最后一次申请交换的最小期望长度
则f[i][j][0]在如下两种情况中取最小值即可:
- 第
i - 1个课程没申请交换,最小期望是f[i - 1][j][0] + d[a[i - 1]][a[i]] - 第
i - 1个课程申请交换,最小期望是f[i - 1][j][0] + d[a[i - 1]][a[i]] * (1 - p[i - 1]) + d[b[i - 1]][a[i]] * p[i - 1]
f[i][j][1]可以用类似的方式得到。
最后遍历f[n][j][k]取最小值就是答案。
C++ 代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2010, M = 310;
const double INF = 1e9;
int n, m, V, E;
int a[N], b[N];
double p[N];
int d[M][M];
double f[N][N][2];
int main()
{
scanf("%d%d%d%d", &n, &m, &V, &E);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) scanf("%d", &b[i]);
for (int i = 1; i <= n; i ++ ) scanf("%lf", &p[i]);
memset(d, 0x3f, sizeof d);
for (int i = 1; i <= V; i ++ ) d[i][i] = d[0][i] = 0;
for (int i = 0; i < E; i ++ )
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
d[u][v] = d[v][u] = min(d[u][v], w);
}
for (int k = 1; k <= V; k ++ )
for (int i = 1; i <= V; i ++ )
for (int j = 1; j <= V; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
for (int i = 0; i <= n; i ++ )
for (int j = 0; j <= m; j ++ )
for (int k = 0; k <= 1; k ++ )
f[i][j][k] = INF;
f[1][0][0] = f[1][1][1] = 0;
for (int i = 2; i <= n; i ++ )
{
for (int j = 0; j <= m; j ++ )
{
f[i][j][0] = min(f[i - 1][j][0] + d[a[i - 1]][a[i]],
f[i - 1][j][1] + d[a[i - 1]][a[i]] * (1 - p[i - 1]) + d[b[i - 1]][a[i]] * p[i - 1]);
if (j)
f[i][j][1] = min(f[i - 1][j - 1][0] + d[a[i - 1]][a[i]] * (1 - p[i]) + d[a[i - 1]][b[i]] * p[i],
f[i - 1][j - 1][1] + d[a[i - 1]][a[i]] * (1 - p[i - 1]) * (1 - p[i])
+ d[b[i - 1]][a[i]] * p[i - 1] * (1 - p[i])
+ d[a[i - 1]][b[i]] * (1 - p[i - 1]) * p[i]
+ d[b[i - 1]][b[i]] * p[i - 1] * p[i]);
}
}
double res = INF;
for (int i = 0; i <= m; i ++ ) res = min(res, min(f[n][i][0], f[n][i][1]));
printf("%.2lf\n", res);
return 0;
}
3. 宝藏
来源:NOIP2017提高组 https://ac.nowcoder.com/acm/contest/265/B
算法知识点: 状态压缩DP
复杂度: &preview=true)
解题思路:
参考这篇题解所写。
状态压缩DP,下文中i是一个 位二进制数,表示每个点是否存在。
状态f[i][j]表示:
- 集合:所有包含
i中所有点,且树的高度等于j的生成树 - 属性:最小花费
状态计算:枚举i的所有非全集子集S作为前j - 1层的点,剩余点作为第j层的点。
核心: 求出第j层的所有点到S的最短边,将这些边权和乘以j,直接加到f[S][j - 1]上,即可求出f[i][j]。
证明:
将这样求出的结果记为f'[i][j]
f[i][j]中花费最小的生成树一定可以被枚举到,因此f[i][j] >= f'[i][j];- 如果第
j层中用到的某条边(a, b)应该在比j小的层,假设a是S中的点,b是第j层的点,则在枚举S + {b}时会得到更小的花费,即这种方式枚举到的所有花费均大于等于某个合法生成树的花费,因此f[i][j] <= f'[i][j]
所以有 f[i][j] = f'[i][j]。
C++ 代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 12, M = 1 << 12, INF = 0x3f3f3f3f;
int n, m;
int d[N][N];
int f[M][N], g[M];
int main()
{
scanf("%d%d", &n, &m);
memset(d, 0x3f, sizeof d);
for (int i = 0; i < n; i ++ ) d[i][i] = 0;
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
a --, b --;
d[a][b] = d[b][a] = min(d[a][b], c);
}
for (int i = 1; i < 1 << n; i ++ )
for (int j = 0; j < n; j ++ )
if (i >> j & 1)
{
for (int k = 0; k < n; k ++ )
if (d[j][k] != INF)
g[i] |= 1 << k;
}
memset(f, 0x3f, sizeof f);
for (int i = 0; i < n; i ++ ) f[1 << i][0] = 0;
for (int i = 1; i < 1 << n; i ++ )
for (int j = (i - 1); j; j = (j - 1) & i)
if ((g[j] & i) == i)
{
int remain = i ^ j;
int cost = 0;
for (int k = 0; k < n; k ++ )
if (remain >> k & 1)
{
int t = INF;
for (int u = 0; u < n; u ++ )
if (j >> u & 1)
t = min(t, d[k][u]);
cost += t;
}
for (int k = 1; k < n; k ++ ) f[i][k] = min(f[i][k], f[j][k - 1] + cost * k);
}
int res = INF;
for (int i = 0; i < n; i ++ ) res = min(res, f[(1 << n) - 1][i]);
printf("%d\n", res);
return 0;
}

京公网安备 11010502036488号