分析
我们先把最初的 方程写出来。令
为
结尾的最小代价。那么转移为
。那么我们令
是
的决策点,那么用前缀和
那么化简后
,那么我们把这个化为了
的形式。但是
并不单调,所以我们考虑使用
维护一个上凸壳。时间复杂度为
。
代码
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const LL N = 8e5 + 10,mod = 998244353,M = 6e8;
const long long inf = 0x3f3f3f3f3f3f3f3f;
LL read() {
LL x = 0,f = 0;char ch = getchar();
while(!isdigit(ch)) {if(ch == '-')f=1;ch=getchar();}
while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
return f?-x:x;
}
LL f[N],n,m,S,C[N],T[N];
LL rt,size,t[N],lc[N],rc[N];
LL clac(LL id,LL pos) {return -C[id] * pos + f[id];}
void insert(LL &u,LL l,LL r,LL id) {
if(!u) u = ++size;
if(!t[u]) {t[u] = id;return;}
LL mid = l + r >> 1;
LL val_L = clac(id,l),val_R = clac(id,r),val_l = clac(t[u],l),val_r = clac(t[u],r);
if(val_L <= val_l && val_R <= val_r) {t[u] = id;return;}
if(val_l <= val_L && val_r <= val_R) {return;}
insert(lc[u],l,mid,id);insert(rc[u],mid+1,r,id);
}
LL query(LL u,LL l,LL r,LL pos) {
if(!u || !t[u]) return inf;
LL ans = clac(t[u],pos);
LL mid = l + r >> 1;
if(pos <= mid) return min(ans,query(lc[u],l,mid,pos));
else return min(ans,query(rc[u],mid+1,r,pos));
}
int main() {
n = read();S = read();
for(LL i = 1;i <= n;i++) T[i] = T[i-1] + read(),C[i] = C[i-1] + read();
f[n+1] = 0;C[n+1] = 0;insert(rt,-M,M,n+1);
for(LL i = 1;i <= n;i++) {
LL res = query(rt,-M,M,T[i] + S);
// if(res >= inf) f[i] = C[n] * S + C[i] * T[i];
f[i] = res + C[n] * S + C[i] * T[i];
insert(rt,-M,M,i);
// cout << res << endl;
}
cout << f[n] << endl;
return 0;
}
京公网安备 11010502036488号