import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
import java.util.function.Function;
/**
* @author supermejane
* @date 2025/10/8
* @description BGN67 撞车
*/
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[][] a = new int[n][2];
int[] dp = new int[n];
for (int i = 0; i < n; i++) {
a[i][0] = in.nextInt();
a[i][1] = in.nextInt();
}
Arrays.sort(a, (o1, o2) -> {
if (o1[0] == o2[0]) return 0;
return o1[0] > o2[0] ? 1 : -1;
});
// 使用dp为o(n * n)会超时
// int subLength = 0;
// Arrays.fill(dp, 1);
// for (int i = 0; i < n; i++) {
// for (int j = 0; j < i; j++) {
// if (illegal(a, i, j)) {
// dp[i] = Math.max(dp[i], dp[j] + 1);
// }
// }
// subLength = Math.max(subLength, dp[i]);
// }
// System.out.println(n - subLength);
// System.out.println(lis(((Function<int[][], int[]>) ab -> Arrays.stream(ab).mapToInt(e -> e[1]).toArray()).apply(a)));
System.out.println(n - ldns(Arrays.stream(a).mapToInt(e -> e[1]).toArray()));
}
// 其实就是 最长非递减子序列(Longest Non-Decreasing Subsequence, LNDS
// public static boolean illegal(int[][] a, int i, int j) {
// if (i <= j || a[i][0] < a[j][0]) throw new RuntimeException("错误的参数");
// if (a[i][1] >= 0) return a[j][1] <= 0 || a[j][1] <= a[i][1];
// else return a[j][1] <= a[i][1];
// return a[i][1] >= 0 ? a[j][1] <= 0 || a[j][1] == a[i][1] : a[j][1] == a[i][1];
// }
//使用贪心 + 二分的方式求ldns, 为o(n * log(n))
public static int ldns(int[] a) {
int[] b = new int[a.length];
int cnt = -1;
for (int i = 0; i < a.length; i++) {
if (cnt < 0 || a[i] >= b[cnt]) b[++cnt] = a[i];
else {
//二分查找大于a[i]的元素的位置
int l = 0, r = cnt;
while (r > l) {
int mid = (r - l) / 2 + l;
if (b[mid] <= a[i]) l = mid + 1;
else r = mid;
}
if (b[l] <= a[i]) System.out.println("Not Found.");
b[l] = a[i];
}
}
return cnt + 1;
}
public static int binary(int[] a, int target) {
int l = 0, r = a.length - 1;
while (r > l) {
int mid = (r - l) / 2 + l;
if (a[mid] <= target) l = mid + 1;
else r = mid;
}
return a[l] > target ? l : -1;
}
}
//一开始用的dp超时,就像可不可以预处理把for j的循环预处理减为o(1), 但是好像没有办法,后面看了题解才知道ldns还有o(n * log(n))的方法求解