题目意思
给出t组数据,每组数据第一行n个节点m条边的无向图
给出边权信息,问选其中三个点最短路径之和最大值为多少。
解题思路
既然要我们最短路可能要用到dijkstra,又因为点可以随意确定,所以只要枚举中间点k,对k求最短路里面最长的两条路之和在return主函数判断最大值即可。如果只有一条路记得return 0出去主函数。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define mk(__x__,__y__) make_pair(__x__,__y__) typedef long long ll; typedef unsigned long long ull; typedef long double ld; const int MOD = 1e9 + 7; const ll INF = 0x3f3f3f3f; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 1e3 + 7; //节点数 const int M = 1e3 + 7; //路径数 int head[N], tot = 0;//前向星变量 struct Node { //int u; //起点 int w; //权值 int v, next; } edge[M << 1]; void add(int u, int v, int w) { tot++; //edge[tot].u = u; edge[tot].v = v; edge[tot].w = w; edge[tot].next = head[u]; head[u] = tot; } int dis[N], vis[N]; int dijkstra(int s) { memset(vis, 0, sizeof vis); memset(dis, 127, sizeof dis); priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; dis[s] = 0; pq.push({ 0,s }); int x = 0, y = 0; while (pq.size()) { pair<int, int> now = pq.top(); pq.pop(); int u = now.second; if (vis[u]) continue; vis[u] = 1; y = max(y, dis[u]); if (y > x) swap(x, y); for (int i = head[u]; i; i = edge[i].next) { if (vis[edge[i].v]) continue; if (dis[edge[i].v] > dis[u] + edge[i].w) { dis[edge[i].v] = dis[u] + edge[i].w; pq.push({ dis[edge[i].v],edge[i].v }); } } } if (!y) return 0; return x + y; } int main() { int T = read(); while (T--) { tot = 0; memset(head, 0, sizeof head); int n = read(), m = read(); int ans = 0; for (int i = 1; i <= m; ++i) { int u = read(), v = read(), w = read(); add(u, v, w), add(v, u, w); } for (int i = 1; i <= n; ++i) ans = max(ans, dijkstra(i)); if (ans) print(ans); else print(-1); putchar(10); } return 0; }