Time Limit: 2 sec / Memory Limit: 1024 MB
Score : <var>700700</var> points
Problem Statement
You are given an integer <var>NN</var>. Build an undirected graph with <var>NN</var> vertices with indices <var>11</var> to <var>NN</var> that satisfies the following two conditions:
- The graph is simple and connected.
- There exists an integer <var>SS</var> such that, for every vertex, the sum of the indices of the vertices adjacent to that vertex is <var>SS</var>.
It can be proved that at least one such graph exists under the constraints of this problem.
Constraints
- All values in input are integers.
- <var>3≤N≤1003≤N≤100</var>
Input
Input is given from Standard Input in the following format:
<var>NN</var>
Output
In the first line, print the number of edges, <var>MM</var>, in the graph you made. In the <var>ii</var>-th of the following <var>MM</var> lines, print two integers <var>aiai</var> and <var>bibi</var>, representing the endpoints of the <var>ii</var>-th edge.
The output will be judged correct if the graph satisfies the conditions.
Sample Input 1 Copy
3
Sample Output 1 Copy
2 1 3 2 3
- For every vertex, the sum of the indices of the vertices adjacent to that vertex is <var>33</var>.
题意:
给你一个数字n,
让你构造你简单图(无重边)
要求这个图的每一个节点所连接的节点的id值加起来相等。*(不用加自己的id值)
思路:
显然找规律的构造题。
我们反过来想,先构建一个完全图,设法去掉一些有规律的边,使整个图满足条件。
通过分析可以发现规律。
当n是奇数的时候,
删除i+j=n的边
否则
删除i+j=n+1的边
细节见代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define rt return #define dll(x) scanf("%I64d",&x) #define xll(x) printf("%I64d\n",x) #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), '\0', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define db(x) cout<<"== [ "<<x<<" ] =="<<endl; using namespace std; typedef long long ll; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;} inline void getInt(int* p); const int maxn=1000010; const int inf=0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ int main() { //freopen("D:\\common_text\\code_stream\\in.txt","r",stdin); //freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); gbtb; int n; cin>>n; std::vector<pii> v; int ans=0; repd(i,1,n) { repd(j,i+1,n) { if(n&1) { if(i+j!=n) { ans++; v.push_back(mp(i,j)); // cout<<i<<" "<<j<<endl; } }else { if(i+j!=n+1) { ans++; v.push_back(mp(i,j)); // cout<<i<<" "<<j<<endl; } } } } cout<<ans<<endl; for(auto x: v) { cout<<x.fi<<" "<<x.se<<endl; } return 0; } inline void getInt(int* p) { char ch; do { ch = getchar(); } while (ch == ' ' || ch == '\n'); if (ch == '-') { *p = -(getchar() - '0'); while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 - ch + '0'; } } else { *p = ch - '0'; while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 + ch - '0'; } } }