数据准备
数据格式
复制代码
2015-03,2015-03-10,cookie1
2015-03,2015-03-10,cookie5
2015-03,2015-03-12,cookie7
2015-04,2015-04-12,cookie3
2015-04,2015-04-13,cookie2
2015-04,2015-04-13,cookie4
2015-04,2015-04-16,cookie4
2015-03,2015-03-10,cookie2
2015-03,2015-03-10,cookie3
2015-04,2015-04-12,cookie5
2015-04,2015-04-13,cookie6
2015-04,2015-04-15,cookie3
2015-04,2015-04-15,cookie2
2015-04,2015-04-16,cookie1
复制代码
创建表
复制代码
use cookie;
drop table if exists cookie5;
create table cookie5(month string, day string, cookieid string)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie5.txt" into table cookie5;
select * from cookie5;

图片说明

玩一玩GROUPING SETS和GROUPING__ID
说明
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

GROUPING__ID,表示结果属于哪一个分组集合。

查询语句
复制代码
select
month,
day,
count(distinct cookieid) as uv,
GROUPING__ID
from cookie.cookie5
group by month,day
grouping sets (month,day)
order by GROUPING__ID;
复制代码
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day

查询结果
图片说明

结果说明
第一列是按照month进行分组

第二列是按照day进行分组

第三列是按照month或day分组是,统计这一组有几个不同的cookieid

第四列grouping_id表示这一组结果属于哪个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day

再比如
复制代码
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;
复制代码
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

图片说明

玩一玩CUBE
说明
根据GROUP BY的维度的所有组合进行聚合

查询语句
复制代码
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;
复制代码
等价于
复制代码
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day
复制代码
查询结果
图片说明
玩一玩ROLLUP
说明
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合

查询语句
-- 比如,以month维度进行层级聚合

SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID
FROM cookie5
GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID;
可以实现这样的上钻过程:
月天的UV->月的UV->总UV
图片说明

--把month和day调换顺序,则以day维度进行层级聚合:

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)
图片说明

转发自:https://www.cnblogs.com/qingyunzong/p/8798987.html