线段树模板题
所以,我偏不用线段树
奇了怪了
主要思路:平衡树——Splay
Splay是可以很好的维护区间的。
我这里主要讲如何用Splay维护区间。
我们知道Splay是严格按照中序遍历的顺序的,用rotate操作并不会改变这种性质,所以我们我们可以考虑一下一棵二叉树的中序遍历的特点。
如果我们把左端点splay到树根,把右端点splay到树根的右儿子位置,我们再做下中序遍历,,,(可以自行脑补)
是不是根的右儿子的左子树的信息就是这段区间的信息?
所以我们用Splay维护区间时我们是提取区间。
完整代码:
(福利:其中还有插入节点,删除节点等操作哦QwQ,附带节点垃圾桶,可回收旧结点)
#include <algorithm> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <queue> #include <set> #include <stack> #include <string> #include <vector> using namespace std; #define go(i, j, n, k) for (int i = j; i <= n; i += k) #define fo(i, j, n, k) for (int i = j; i >= n; i -= k) #define rep(i, x) for (int i = h[x]; i; i = e[i].nxt) #define mn 100010 #define ld long double #define fi first #define se second #define inf 1 << 30 #define ll long long #define root 1, n, 1 #define lson l, m, rt << 1 #define rson m + 1, r, rt << 1 | 1 inline ll read() { ll x = 0, f = 1; char ch = getchar(); while (ch > '9' || ch < '0') { if (ch == '-') f = -f; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } vector<int> ljt; struct tree { int ch[2], sze, fa; ll w, sum, col; tree(int _sze = 0, int _fa = 0, int _w = 0, int _sum = 0, int _col = 0) : sze(_sze), fa(_fa), w(_w), sum(_sum), col(_col) { ch[1] = ch[0] = 0; } } z[mn]; int n, m, tot, a[mn]; inline int newnode(int v = 0) { int rt; if (ljt.empty()) rt = ++tot; else rt = ljt.back(), ljt.pop_back(); z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = 0; z[rt].sze = 1; z[rt].w = z[rt].sum = v; return rt; } inline void deletenode(int rt) { z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = z[rt].w = z[rt].sum = 0; z[rt].sze = 1; ljt.push_back(rt); } inline void update(int rt) { z[rt].sum = z[rt].w, z[rt].sze = 1; if(z[rt].ch[0]) z[rt].sum += z[z[rt].ch[0]].sum, z[rt].sze += z[z[rt].ch[0]].sze; if(z[rt].ch[1]) z[rt].sum += z[z[rt].ch[1]].sum, z[rt].sze += z[z[rt].ch[1]].sze; } inline void push_col(int rt) { if(z[rt].col) { z[z[rt].ch[0]].col += z[rt].col; z[z[rt].ch[1]].col += z[rt].col; z[z[rt].ch[0]].sum += z[z[rt].ch[0]].sze * z[rt].col; z[z[rt].ch[1]].sum += z[z[rt].ch[1]].sze * z[rt].col; z[z[rt].ch[0]].w += z[rt].col; z[z[rt].ch[1]].w += z[rt].col; z[rt].col = 0; } } inline int iden(int rt) { return z[z[rt].fa].ch[0] == rt ? 0 : 1; } inline void conn(int x, int y, int son) { z[x].fa = y; z[y].ch[son] = x; } inline void rotate(int x)//敲好记的rotate函数! { int y = z[x].fa; int moot = z[y].fa; int yson = iden(x); int mootson = iden(y); int B = z[x].ch[yson ^ 1]; conn(B, y, yson), conn(y, x, yson ^ 1), conn(x, moot, mootson); update(y), update(x); } inline void splay(int x, int &k)//传址要注意 { if (x == k) return; int p = z[k].fa; while (z[x].fa != p) { push_col(x); int y = z[x].fa; if (z[y].fa != p) rotate(iden(y) ^ iden(x) ? x : y); rotate(x); } k = x; } inline int findkth(int rt, int k) { while (233) { push_col(rt); if (z[rt].ch[0] && k <= z[z[rt].ch[0]].sze) rt = z[rt].ch[0]; else { if (z[rt].ch[0]) k -= z[z[rt].ch[0]].sze; if (!--k) return rt; rt = z[rt].ch[1]; } } } inline void insert(int &rt, int p, int v)//传址要注意 { int x = findkth(rt, p); splay(x, rt); int y = findkth(rt, p + 1); int ooo = z[rt].ch[1]; splay(y, ooo); z[y].ch[0] = newnode(v); z[z[y].ch[0]].fa = y; update(z[y].ch[0]), update(y), update(x); } inline void erase(int &rt, int p)//传址要注意 { int y = findkth(rt, p); splay(y, rt); int x = findkth(rt, p + 1); int ooo = z[rt].ch[1]; splay(x, ooo); int oo = z[x].ch[1]; z[oo].fa = y; z[y].ch[1] = oo; deletenode(x); update(y); } inline int getRange(int &rt, int l, int r)//传址要注意 { int x = findkth(rt, l); splay(x, rt); int y = findkth(rt, r + 2); int ooo = z[rt].ch[1]; splay(y, ooo); return z[y].ch[0]; } inline void modify(int &rt, int l, int r, ll v)//传址要注意 { int x = getRange(rt, l, r); z[x].col += v; z[x].w += v; z[x].sum += z[x].sze * v; update(z[rt].ch[1]); update(rt); } inline ll query(int &rt, int l, int r)//传址要注意 { int x = getRange(rt, l, r); return z[x].sum; } inline void build(int rt, int l, int r) { int m = (l + r) >> 1; z[rt].w = a[m]; if (l <= m - 1) { z[rt].ch[0] = newnode(); z[z[rt].ch[0]].fa = rt; build(z[rt].ch[0], l, m - 1); } if (m + 1 <= r) { z[rt].ch[1] = newnode(); z[z[rt].ch[1]].fa = rt; build(z[rt].ch[1], m + 1, r); } update(rt); } inline void debug(int rt)//debug专用,利用中序遍历 { //if(!z[rt].ch[0] && !z[rt].ch[1]) // return; if (rt == 0) return; debug(z[rt].ch[0]); printf("%d %d %d\n", z[rt].w, z[rt].sum, z[rt].sze); debug(z[rt].ch[1]); } int main() { n = read(); m = read(); go(i, 1, n, 1) a[i] = read(); int rot = ++tot; build(rot, 0, n + 1); //debug(rot); //cout << query(rot, 1, n) << "\n"; go(i, 1, m, 1) { int s = read(), x = read(), y = read(); if (s == 1) { int v = read(); modify(rot, x, y, v); } else { cout << query(rot, x, y) << "\n"; } } return 0; }