D2. Too Many Segments (hard version)
https://codeforces.com/contest/1249/problem/D2
题意 :给了n个线段区间让你尽可能的删最少的线段 使每个区间线段覆盖次数少于k次
思维题 D1直接贪过去 我们找这个区间最远R的 剪掉 这样一定对后面的最优
D2 暴力就找最远的显然不合适了
这里我想的 优先队列 存之前到这个点所有的线段 用Vector 存L点 开始出现的线段
之后 我们直接开始从1 遍历到 N 那个点大于K 我们选择最远的R 来把它-1 直到小于等于K
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
const int N = 2e5;
int n, k;
struct Seg {
int id;
int l, r;
bool operator < (const Seg & a) const {
return r < a.r;
}
} seg[maxn];
vector<Seg> G[maxn];
priority_queue<Seg> que;
vector<int> ans;
int tree[maxn << 2], add[maxn << 2];
inline void push_up(int rt) {
tree[rt] = max(tree[rt << 1], tree[rt << 1 | 1]);
}
inline void push_down(int rt) {
if(!add[rt])
return ;
tree[rt << 1] += add[rt];
tree[rt << 1 | 1] += add[rt];
add[rt << 1] += add[rt];
add[rt << 1 | 1] += add[rt];
add[rt] = 0;
}
void updata(int L, int R, int l, int r, int rt, int val) {
//cout << l << " " << r << endl;
if(L <= l && R >= r) {
tree[rt] += val;
add[rt] += val;
return ;
}
push_down(rt);
int mid = l + r >> 1;
if(L <= mid)
updata(L, R, l, mid, rt << 1, val);
if(R > mid)
updata(L, R, mid + 1, r, rt << 1 | 1, val);
push_up(rt);
}
int query(int L, int l, int r, int rt) {
if(l == r)
return tree[rt];
push_down(rt);
int mid = l + r >> 1;
if(L <= mid)
return query(L, l, mid, rt << 1);
else
return query(L, mid + 1, r, rt << 1 | 1);
}
int main() {
cin >> n >> k;
for(int i = 1; i <= n; i ++) {
cin >> seg[i].l >> seg[i].r;
seg[i].id = i;
G[seg[i].l].push_back(seg[i]);
updata(seg[i].l, seg[i].r, 1, N, 1, 1);
}
// for(int i = 1; i <= 15; i ++) {
// cout << query(i, 1, N, 1) << " ";
// } cout << endl;
// sort(seg + 1, seg + 1 + n, [](const Seg & a, const Seg & b) {
// return a.l < b.l || (a.l == b.l && a.r < b.r);
// }); // 本来想遍历线段 发现不用 复习下这个写法 lambda 函数 匿名函数
for(int i = 1; i <= N; i ++) {
for(Seg t : G[i]) que.push(t);
while(query(i, 1, N, 1) > k) {
Seg t = que.top();
que.pop();
ans.push_back(t.id);
updata(t.l, t.r, 1, N, 1, -1);
}
}
cout << ans.size() << endl;
for(int i = 0; i < ans.size(); i ++) {
if(i != 0) cout << " ";
cout << ans[i];
if(i == ans.size() - 1) cout << endl;
}
return 0;
}