题目描述
辣鸡多项式板子题不配拥有描述。
正解
先来康康三道模板题。
题目中那个一坨,其实相当于分别按顺序做上面的三个东西。
这题真的很没有营养,会就会,不会怎么想都写不了。
#include <bits/stdc++.h> #define N 262144 using namespace std; const int mod = 998244353, inv2 = 499122177; int n; int rev[N], lim, hib; int A[N], B[N], C[N], D[N], popc[N]; int f[20][N], g[20][N], h[20][N]; inline int Add(int u, int v) { return (u += v) >= mod ? u - mod : u; } inline void Inc(int &u, int v) { if((u += v) >= mod) u -= mod; } inline int fpm(int x, int y) { int r = 1; while(y) { if(y & 1) r = 1LL * x * r % mod; x = 1LL * x * x % mod, y >>= 1; } return r; } inline int read() { int x = 0; char ch = getchar(); while(!isdigit(ch)) ch = getchar(); while(isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); return x; } void getrev(int len) { lim = 1, hib = -1; while(lim < len) lim <<= 1, ++hib; for(int i = 0; i < lim; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << hib); } void fwtOr(int *a, bool type) { for(int mid = 1; mid < lim; mid <<= 1) for(int i = 0; i < lim; i += (mid << 1)) for(int j = 0; j < mid; ++j) if(type) Inc(a[i + mid + j], a[i + j]); else Inc(a[i + mid + j], mod - a[i + j]); } void fwtXor(int *a, bool type) { static int x, y; for(int mid = 1; mid < n; mid <<= 1) for(int len = mid << 1, i = 0; i < n; i += len) for(int j = 0; j < mid; ++j) { x = a[i + j], y = a[i + mid + j]; a[i + j] = Add(x, y), a[i + mid + j] = Add(x, mod - y); if(!type) a[i + j] = 1LL * inv2 * a[i + j] % mod, a[i + mid + j] = 1LL * inv2 * a[i + mid + j] % mod; } } void NTT(int *a, bool type) { for(int i = 0; i < lim; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]); static int x, y; for(int mid = 1; mid < lim; mid <<= 1) { int len = mid << 1, wn = fpm(3, (mod - 1) / len); for(int i = 0; i < lim; i += len) for(int j = 0, w = 1; j < mid; ++j, w = 1LL * w * wn % mod) { x = a[i + j], y = 1LL * w * a[i + mid + j] % mod; a[i + j] = Add(x, y), a[i + mid + j] = Add(x, mod - y); } } if(!type) { reverse(a + 1, a + lim); int inv = fpm(lim, mod - 2); for(int i = 0; i < lim; ++i) a[i] = 1LL * inv * a[i] % mod; } } int main() { n = read(), ++n; getrev(n + n - 1); for(int i = 0; i < lim; ++i) popc[i] = popc[i >> 1] + (i & 1); for(int i = 0; i < n; ++i) A[i] = read(), f[popc[i]][i] = A[i]; for(int i = 0; i < n; ++i) B[i] = read(), g[popc[i]][i] = B[i]; for(int i = 0; i < n; ++i) C[i] = read(); for(int i = 0; i < n; ++i) D[i] = read(); for(int i = 0; i <= 17; ++i) fwtOr(f[i], true), fwtOr(g[i], true); for(int sa = 0; sa <= 17; ++sa) for(int sb = 0; sb + sa <= 17; ++sb) for(int i = 0; i < lim; ++i) h[sa + sb][i] = (h[sa + sb][i] + 1LL * f[sa][i] * g[sb][i]) % mod; for(int i = 0; i <= 17; ++i) fwtOr(h[i], false); for(int i = 0; i < lim; ++i) A[i] = h[popc[i]][i]; NTT(A, true), NTT(C, true); for(int i = 0; i < lim; ++i) A[i] = 1LL * A[i] * C[i] % mod; NTT(A, false); fwtXor(A, true), fwtXor(D, true); for(int i = 0; i < lim; ++i) A[i] = 1LL * A[i] * D[i] % mod; fwtXor(A, false); int Q = read(); while(Q--) printf("%d\n", A[read()]); return 0; }