3.bfs 队列
初始化方式
new int[]{i, j + 1}
import java.util.*;
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
//临时变量visited记录格子是否被访问过
boolean[][] visited = new boolean[rows][cols];
int res = 0;
//创建一个队列,保存的是访问到的格子坐标,是个二维数组
Queue<int[]> queue = new LinkedList<>();
//从左上角坐标[0,0]点开始访问,add方法表示把坐标
// 点加入到队列的队尾
queue.add(new int[]{0, 0});
while (queue.size() > 0) {
//这里的poll()函数表示的是移除队列头部元素,因为队列
// 是先进先出,从尾部添加,从头部移除
int[] x = queue.poll();
int i = x[0], j = x[1];
//i >= m || j >= n是边界条件的判断,k < sum(i, j)判断当前格子坐标是否
// 满足条件,visited[i][j]判断这个格子是否被访问过
if (i >= rows || j >= cols || threshold < check(i, j) || visited[i][j])
continue;
//标注这个格子被访问过
visited[i][j] = true;
res++;
//把当前格子下边格子的坐标加入到队列中
queue.add(new int[]{i + 1, j});
//把当前格子右边格子的坐标加入到队列中
queue.add(new int[]{i, j + 1});
}
return res;
}
public int check(int row, int col){
int sum = 0;
while(row != 0){
sum = sum + (row % 10);
row = row / 10;
}
while(col != 0){
sum = sum + (col % 10);
col = col / 10;
}
return sum;
}
}1.dfs
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
boolean[][] visited = new boolean[rows][cols];
int sum = dfs(0,0,rows,cols,threshold,visited);
return sum;
}
public int dfs(int i, int j, int m, int n, int k, boolean[][] visited) {
//i >= m || j >= n是边界条件的判断,k < sum(i, j)判断当前格子坐标是否
// 满足条件,visited[i][j]判断这个格子是否被访问过
if (i >= m || j >= n || k < check(i, j) || visited[i][j])
return 0;
//标注这个格子被访问过
visited[i][j] = true;
//沿着当前格子的右边和下边继续访问
return 1 + dfs(i + 1, j, m, n, k, visited) + dfs(i, j + 1, m, n, k, visited);
}
public int check(int row, int col){
int sum = 0;
while(row != 0){
sum = sum + (row % 10);
row = row / 10;
}
while(col != 0){
sum = sum + (col % 10);
col = col / 10;
}
return sum;
}
}2.DP 思路 往下寻找
o(n^2)
通过dfs或者bfs 能节省点时间
public class Solution {
public int movingCount(int threshold, int rows, int cols) {
int[][] dp = new int[rows+1][cols+1];
int sum = 0;
//多一行初始化
dp[0][0] = 1;
dp[0][1] = 1;
dp[1][0] = 1;
for(int i=1; i<=rows;i++){
for(int j =1; j <= cols ; j++){
//多一行初始化 数会变 因此 check 需要-1
if(i>=0 && j>=0 && check(i-1,j-1) <= threshold){
if(dp[i][j-1] == 1 || dp[i-1][j] == 1) {
dp[i][j] = 1;
sum++;}
}
}
}
return sum;
}
public int check(int row, int col){
int sum = 0;
while(row != 0){
sum = sum + (row % 10);
row = row / 10;
}
while(col != 0){
sum = sum + (col % 10);
col = col / 10;
}
return sum;
}
}


京公网安备 11010502036488号