φ ( n ⋅ m ) = φ ( n ) ⋅ φ ( m ) ⋅ d φ ( d ) 其 中 d = g c d ( n , m ) \varphi(n\cdot m)=\varphi(n)\cdot \varphi(m)\cdot \frac{d}{\varphi(d)}\\其中d=gcd(n,m) φ(n⋅m)=φ(n)⋅φ(m)⋅φ(d)d其中d=gcd(n,m)
其实很好理解,假如 n = 2 2 ⋅ 3 3 , m = 2 2 ⋅ 5 3 n=2^2\cdot 3^3,m=2^2\cdot 5^3 n=22⋅33,m=22⋅53
那么 φ ( n ⋅ m ) = 2 2 ⋅ 3 3 ⋅ 2 2 ⋅ 5 5 ⋅ ( 1 − 1 2 ) ⋅ ( 1 − 1 3 ) ⋅ ( 1 − 1 5 ) \varphi(n\cdot m)=2^2\cdot 3^3\cdot2^2\cdot5^5\cdot(1-\frac{1}{2})\cdot(1-\frac{1}{3})\cdot(1-\frac{1}{5}) φ(n⋅m)=22⋅33⋅22⋅55⋅(1−21)⋅(1−31)⋅(1−51)
φ ( n ) ⋅ φ ( m ) = 2 2 ⋅ 3 3 ⋅ ( 1 − 1 2 ) ⋅ ( 1 − 1 3 ) ⋅ 2 2 ⋅ 5 5 ⋅ ( 1 − 1 2 ) ⋅ ( 1 − 1 5 ) \varphi(n)\cdot \varphi(m)=2^2\cdot 3^3\cdot(1-\frac{1}{2})\cdot(1-\frac{1}{3})\cdot2^2\cdot5^5\cdot(1-\frac{1}{2})\cdot(1-\frac{1}{5}) φ(n)⋅φ(m)=22⋅33⋅(1−21)⋅(1−31)⋅22⋅55⋅(1−21)⋅(1−51)
很明显下面的之比上面的多一个 ( 1 − 1 2 ) (1-\frac{1}{2}) (1−21),而他其实就是因为 n n n 和 m m m 的公共的质因子 2 2 2 搞出来的 所以把多余的除掉就行了~