import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler def feature_scaling(data): # 补全代码 stand = StandardScaler() minmax = MinMaxScaler() data_stand = stand.fit_transform(data).round(4) data_minmax = minmax.fit_transform(data).round(4) data_stand1 = data_stand.tolist() data_minmax1 = data_minmax.tolist() return data_stand1,data_minmax1 # 主程序 if __name__ == "__main__": # 输入数组 data = input() # 处理输入 import ast data = ast.literal_eval(data) # 调用函数计算 output = feature_scaling(data) # 输出结果 print(output)
1.使用MinMaxScaler,用fit_transform函数
2.array转list,用tolist函数