裸的棋盘处理==
Description
Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid.
Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.
Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.
Input
* Line 1: Two integers N and K, separated by a single space.
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.
Output
* Line 1: The integer representing the minimum number of times Bessie must shoot.
Sample Input
3 4 1 1 1 3 2 2 3 2
Sample Output
2
Hint
INPUT DETAILS:
The following diagram represents the data, where "X" is an asteroid and "." is empty space:
<tt>X.X
.X.
.X.</tt>
OUTPUT DETAILS:
Bessie may fire across row 1 to destroy the asteroids at (1,1) and (1,3), and then she may fire down column 2 to destroy the asteroids at (2,2) and (3,2).
The following diagram represents the data, where "X" is an asteroid and "." is empty space:
<tt>X.X
.X.
.X.</tt>
OUTPUT DETAILS:
Bessie may fire across row 1 to destroy the asteroids at (1,1) and (1,3), and then she may fire down column 2 to destroy the asteroids at (2,2) and (3,2).
#include<cstdio>
#include<cstring>
using namespace std;
/* **************************************************************************
//二分图匹配(匈牙利算法的DFS实现)
//初始化:g[][]两边顶点的划分情况
//建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
//g没有边相连则初始化为0
//uN是匹配左边的顶点数,vN是匹配右边的顶点数
//调用:res=hungary();输出最大匹配数
//优点:适用于稠密图,DFS找增广路,实现简洁易于理解
//时间复杂度:O(VE)
//***************************************************************************/
//顶点编号从0开始的
const int MAXN=505;
int g[MAXN][MAXN];
int linker[MAXN];
bool used[MAXN];
int k,m,n,u,v;
bool dfs(int u)//从左边开始找增广路径
{
int v;
for(v=1;v<=n;v++)//这个顶点编号从0开始,若要从1开始需要修改
if(g[u][v]&&!used[v])
{
used[v]=true;
if(linker[v]==-1||dfs(linker[v]))
{//找增广路,反向
linker[v]=u;
return true;
}
}
return false;//这个不要忘了,经常忘记这句
}
int hungary()
{
int res=0;
int u;
memset(linker,-1,sizeof(linker));
for(u=1;u<=n;u++)
{
memset(used,0,sizeof(used));
if(dfs(u)) res++;
}
return res;
}
int main()
{
//freopen("cin.txt","r",stdin);
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
memset(g,0,sizeof(g));
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
g[u][v]=1;
}
printf("%d\n",hungary());
}
return 0;
}