import java.util.*;
public class Solution {
/**
* longest common subsequence
* @param s1 string字符串 the string
* @param s2 string字符串 the string
* @return string字符串
*/
public String LCS (String s1, String s2) {
// write code here
int m = s1.length();
int n = s2.length();
// dp表示 s1前i个元素 与s2前j个元素的最长公共子序列串
String[][] dp = new String[m+1][n+1];
for (int i = 0; i <= s1.length(); i++) {
dp[i][0] = "";
}
for (int i = 0; i <= s2.length(); i++) {
dp[0][i] = "";
}
for(int i = 1; i <= m;i++){
for(int j = 1; j <= n;j++){
if(s1.charAt(i-1) == s2.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + s1.charAt(i-1);
}else{
dp[i][j] = dp[i-1][j].length() > dp[i][j-1].length() ?
dp[i-1][j] : dp[i][j-1];
}
}
}
return dp[m][n].length() == 0 ? "-1" : dp[m][n];
}
}