题目链接
分析
设\(dp[l][r][0]\)为走过区间\([l,r]\)的景点且落脚点为\(l\)用的最短时间,\(dp[l][r][1]\)为走过区间\([l,r]\)的景点且落脚点为\(r\)用的最短时间。
则有转移:
- \(dp[l][r][0]=min(dp[l+1][r][0]+p[l+1]-p[l],dp[l+1][r][1]+p[r]-p[l])\)。
- \(dp[l][r][1]=min(dp[l][r-1][1]+p[r]-p[r-1],dp[l][r-1][0]+p[r]-p[l])\)。
转移的过程中要判断一些合法情况和边界情况。
Code
#include<algorithm>
#include<iostream>
#include<cstring>
#include<iomanip>
#include<sstream>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<cmath>
#include<stack>
#include<set>
#include<map>
#define rep(i,x,n) for(int i=x;i<=n;i++)
#define per(i,n,x) for(int i=n;i>=x;i--)
#define sz(a) int(a.size())
#define rson mid+1,r,p<<1|1
#define pii pair<int,int>
#define lson l,mid,p<<1
#define ll long long
#define pb push_back
#define mp make_pair
#define se second
#define fi first
using namespace std;
const double eps=1e-8;
const int mod=1e9+7;
const int N=1e5+10;
const int inf=1e9;
int n,p[1010],t[1010];
int dp[1010][1010][2];
int dfs(int l,int r,int s){
if(dp[l][r][s]!=-1) return dp[l][r][s];
int ret;
int &f=dp[l][r][s];
if(s==0){
ret=dfs(l+1,r,s)+p[l+1]-p[l];
if(ret<=t[l]) f=f==-1?ret:min(f,ret);
ret=dfs(l+1,r,!s)+p[r]-p[l];
if(ret<=t[l]) f=f==-1?ret:min(f,ret);
}else{
ret=dfs(l,r-1,s)+p[r]-p[r-1];
if(ret<=t[r]) f=f==-1?ret:min(f,ret);
ret=dfs(l,r-1,!s)+p[r]-p[l];
if(ret<=t[r]) f=f==-1?ret:min(f,ret);
}
if(f==-1) f=inf;
return dp[l][r][s];
}
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
cin>>n;
rep(i,1,n){
cin>>p[i];
}
memset(dp,-1,sizeof(dp));
rep(i,1,n){
cin>>t[i];
if(t[i]==0) dp[i][i][0]=dp[i][i][1]=0;
else dp[i][i][0]=dp[i][i][1]=inf;
}
int ans=inf;
ans=min(dfs(1,n,0),dfs(1,n,1));
if(ans==inf) ans=-1;
cout<<ans<<endl;
return 0;
}