这题其实并不难啊,有个结论比较显然
下面推个狮子
#include <bits/stdc++.h> using namespace std; typedef long long LLL; const int N = 1e6 + 10, mod = 1e9 + 7, Mod = mod - 1; LLL prime[N], mu[N], Fib[N], phi[N], inv_Fib[N], f[N], cnt; bool st[N]; LLL quick_pow(LLL a, int n) { LLL res = 1; while(n) { if(n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } LLL inv(LLL a) { return quick_pow(a, mod - 2); } void init() { Fib[1] = mu[1] = f[1] = 1; for(int i = 2; i < N; i++) { f[i] = 1; Fib[i] = (Fib[i - 1] + Fib[i - 2]) % mod; if(!st[i]) { prime[++cnt] = i; mu[i] = -1; } for(int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) { st[i * prime[j]] = 1; if(i % prime[j] == 0) break; mu[i * prime[j]] = -mu[i]; } } for(int i = 1; i < N; i++) inv_Fib[i] = inv(Fib[i]); for(int i = 1; i < N; i++) { for(int j = i; j < N; j += i) { if(mu[j / i] == 1) f[j] = f[j] * Fib[i] % mod; else if(mu[j / i] == -1) f[j] = f[j] * inv_Fib[i] % mod; } } f[0] = 1; for(int i = 1; i < N; i++) f[i] = f[i] * f[i - 1] % mod; } int main() { init(); int T; scanf("%d", &T); while(T--) { int n, m; scanf("%d %d", &n, &m); if(n > m) swap(n, m); LLL res = 1; for(int l = 1, r; l <= n; l = r + 1) { r = min(n / (n / l), m / (m / l)); res = res * quick_pow(f[r] * inv(f[l - 1]) % mod, 1ll * (n / l) * (m / l) % Mod) % mod; } printf("%lld\n", res); } return 0; }