LCS:设d(i,j)为A1,A2,...,Ai和B1,B2,...,Bj的LCS长度,则当A[i]=B[j]时,d(i,j)=d(i-1,j-1)+1,否则d(i,j)=max{d(i-1,j),d(i,j-1)},时间复杂度为O(nm),其中n和m分别是A和B的长度。
输出LCS的思想其实就是倒过来反向推理的过程。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3+7;
int a[maxn];
int b[maxn];
int dp[maxn][maxn];
int n, m;
void printLCS()
{
vector<int> vec;
int i = n, j = m;
while(i > 0 && j > 0)
{
if(a[i] == b[j])
{
vec.push_back(a[i]);
i--;
j--;
}
else
{
if(dp[i-1][j] > dp[i][j-1])
i--;
else
j--;
}
}
printf("YES\n");
printf("%d ",dp[n][m]);
for(int i = vec.size()-1; i >= 0; i--) {
printf("%d ",vec[i]);
}
printf("\n");
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++) {
scanf("%d",&a[i]);
}
for(int i = 1; i <= m; i++) {
scanf("%d",&b[i]);
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(a[i] == b[j]) dp[i][j] = dp[i-1][j-1]+1;
else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
}
if(dp[n][m] == 0)
printf("NO\n");
else
printLCS();
}
}

京公网安备 11010502036488号