Solution
容易发现,答案是两点间某条路径的每个点可扩展大小的最小值
刚开始我按 kruskal重构树模板来写,边权记为两点的可扩展大小的 min,复杂度 O(n2logn+qlogn)发现 TLE了
后来发现不需要建那些额外的边,每个点就是一个权值,可我发现 lca的预处理还是 O(n2logn),仔细一想,诶, lca可以不用预处理,直接查询的时候暴力跑就行了
排序用计数排序优化一下,总复杂度 O(n2+qlogn)
Code
TLE代码:
#include<cstdio>
#include<algorithm>
const int N=1002,M=2000002;
struct node{
int x,y,w;
}e[M];
int n,i,j,t,sum[N][N],g[N][N],rx,ry,fa[M],f[M][22],dep[M],val[M],v[M],m,cnt,c[M][2],q,x1,y1,x2,y2;
inline char gc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd(){
int x=0,fl=1;char ch=gc();
for (;ch<48||ch>57;ch=gc())if(ch=='-')fl=-1;
for (;48<=ch&&ch<=57;ch=gc())x=(x<<3)+(x<<1)+(ch^48);
return x*fl;
}
inline void wri(int a){if(a>=10)wri(a/10);putchar(a%10|48);}
inline int min(int a,int b){return a&((a-b)>>31)|b&(~(a-b)>>31);}
inline int id(int x,int y){return (x-1)*n+y;}
bool cmp(node a,node b){return a.w>b.w;}
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
int lca(int x,int y){
if (dep[x]<dep[y]) x^=y,y^=x,x^=y;
for (int i=21;~i;i--)
if (dep[f[x][i]]>=dep[y]) x=f[x][i];
if (x==y) return x;
for (int i=21;~i;i--)
if (f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][0];
}
int main(){
n=rd();
for (i=1;i<=n;i++,gc())
for (j=1;j<=n;j++) sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+(gc()=='#');
for (i=1;i<=n;i++)
for (j=1;j<=n;j++){
t=min(min(g[i-1][j-1],g[i-1][j+1]),min(n-i,n-j))+1;
while (t && sum[i+t-1][j+t-1]-sum[i+t-1][j-t]-sum[i-t][j+t-1]+sum[i-t][j-t]) t--;
if (!t) continue;
g[i][j]=t,val[id(i,j)]=t*2-1;
if (i>1) e[++m]=(node){id(i-1,j),id(i,j),min(val[id(i-1,j)],val[id(i,j)])};
if (j>1) e[++m]=(node){id(i,j-1),id(i,j),min(val[id(i,j-1)],val[id(i,j)])};
}
for (i=1;i<=n*n*2;i++) fa[i]=i;
std::sort(e+1,e+m+1,cmp);
cnt=n*n;
for (i=1;i<=m;i++){
rx=find(e[i].x),ry=find(e[i].y);
if (rx!=ry){
c[++cnt][0]=rx,c[cnt][1]=ry;
v[cnt]=e[i].w;
fa[rx]=fa[ry]=f[rx][0]=f[ry][0]=cnt;
}
}
for (j=1;j<22;j++)
for (i=1;i<=cnt;i++) f[i][j]=f[f[i][j-1]][j-1];
dep[0]=-1;
for (i=cnt;i>n*n;i--) dep[c[i][0]]=dep[c[i][1]]=dep[i]+1;
q=rd();
for (;q--;) x1=rd(),y1=rd(),x2=rd(),y2=rd(),wri(v[lca(id(x1,y1),id(x2,y2))]),puts("");
}
bzoj当前 rank1代码
#include<cstdio>
#include<vector>
using namespace std;
const int N=1002,M=2000002;
struct node{
int x,y,w;
}e[M];
vector<node>st[N];
int n,i,j,t,sum[N][N],g[N][N],fa[M],dep[M],v[M],m,q,x1,y1,x2,y2,k,dx[4]={0,0,1,-1},dy[4]={1,-1,0,0},x,y,ans;
inline char gc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd(){
int x=0,fl=1;char ch=gc();
for (;ch<48||ch>57;ch=gc())if(ch=='-')fl=-1;
for (;48<=ch&&ch<=57;ch=gc())x=(x<<3)+(x<<1)+(ch^48);
return x*fl;
}
inline void wri(int a){if(a>=10)wri(a/10);putchar(a%10|48);}
inline int min(int a,int b){return a&((a-b)>>31)|b&(~(a-b)>>31);}
inline int id(int x,int y){return (x-1)*n+y;}
int find(int x){while (x!=fa[x]) x=fa[x];return x;}
void link(int x,int y,int t){
x=find(x),y=find(y);
if (x==y) return;
if (dep[x]>dep[y]) x^=y,y^=x,x^=y;//如果把这句改成<,下一句改成dep[x]++就会超时,因为根是y,后面的操作只跟y有关
if (dep[x]==dep[y]) dep[y]++;
fa[x]=y,v[x]=t;
}
int main(){
n=rd();
for (i=1;i<=n;i++,gc())
for (j=1;j<=n;j++) sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+(gc()=='#');
for (i=1;i<=n;i++)
for (j=1;j<=n;j++){
t=min(min(g[i-1][j-1],g[i-1][j+1]),min(n-i,n-j))+1;
while (t && sum[i+t-1][j+t-1]-sum[i+t-1][j-t]-sum[i-t][j+t-1]+sum[i-t][j-t]) t--;
if (!t) continue;
g[i][j]=t,v[id(i,j)]=t*2-1;
st[v[id(i,j)]].push_back((node){i,j,m});
}
for (i=n;i;i--)
for (j=0;j<st[i].size();j++) e[++m]=(node){st[i][j].x,st[i][j].y,i};
for (i=1;i<=m;i++){
fa[id(e[i].x,e[i].y)]=id(e[i].x,e[i].y);
for (k=0;k<4;k++){
x=e[i].x+dx[k],y=e[i].y+dy[k];
if (1<=x && x<=n && 1<=y && y<=n && fa[id(x,y)]) link(id(e[i].x,e[i].y),id(x,y),e[i].w);
}
}
q=rd();
for (;q--;){
x1=rd(),y1=rd(),x2=rd(),y2=rd();
x=id(x1,y1),y=id(x2,y2);
i=j=0,x1=x,y1=y;
while (x1!=fa[x1]) x1=fa[x1],i++;
while (y1!=fa[y1]) y1=fa[y1],j++;
if (x1!=y1){
puts("0");
continue;
}
ans=1e9;
while (x!=y){
if (i<j) x^=y,y^=x,x^=y,i^=j,j^=i,i^=j;
ans=min(ans,v[x]);
x=fa[x],i--;
}
wri(ans),puts("");
}
}