有详细注释
#include <bits/stdc++.h>
#define INFI 9999999
#define FIO ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
using namespace std;
typedef long long int ll;
int n, m, place_num, road[209][209], want_go[20];
ll dp[1 << 15][20], ans;
int main() {
FIO;
cin >> n >> m >> place_num;
//place_num总共想要去的地点数
for (int i = 1; i <= place_num; i++) {
cin >> want_go[i];
}
//初始化不同点之间的距离为无穷大
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i != j) {
road[i][j] = INFI;
}
}
}
int a, b, c;
for (int i = 1; i <= m; i++) {
cin >> a >> b >> c;
road[a][b] = min(road[a][b], c);
road[b][a] = road[a][b];
}
//Floyd求最短路
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
road[j][k] = min(road[j][k], road[j][i] + road[i][k]);
}
}
}
//初始化dp数组
memset(dp, INFI, sizeof(dp));
for (int i = 1; i <= place_num; i++) {
dp[1 << (i - 1)][i] = 0;
}
for (int i = 1; i < (1 << place_num) - 1; i++) {
//转换成二进制,1表示已经去了该地点,0表示没有去过该地点
for (int j = 1; j <= place_num; j++) {
if (i & (1 << (j - 1))) {//i的二进制的第j位为1,即已经去了第j个顶点
//那么我们就可用当前的数据去更新还未去的地点的数据
for (int k = 1; k <= place_num; k++) {
if ((i & (1 << (k - 1))) == 0) {//i的二进制的第k位为0
dp[i + (1 << (k - 1))][k] = min(dp[i + (1 << (k - 1))][k],
dp[i][j] + road[want_go[j]][want_go[k]]);
//dp数组第一维存储i,记录了当前已经去了和没去的地点
//第二维存储当前走法的最后到达的位置
}
}
}
}
}
ans = INFI;
for (int i = 1; i <= place_num; i++) {
ans = min(ans, dp[(1 << place_num) - 1][i]);
}
cout << ans << endl;
return 0;
} 
京公网安备 11010502036488号