W:
dp[i][j]表示s1,s2在i-1,j-1之前最长公共子序列的长度;
熟悉这个定义后容易得到如果字符串相等,那么dp[i][j] = dp[i - 1][j - 1] + 1;
如果不相等,那么需要做出选择,当前状态是由两个字符串转换而来,即s1[...i-2]与s2[...j-1或s2[...j-2]与s1[...i-1]对应dp[i-1][j]和dp[i][j-1]dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
反向遍历参考
N
i <= len1中的"=";
反向遍历相等情况
dp[i - 1][j] >= dp[i][j - 1]
class Solution
{
public:
/**
* longest common subsequence
* @param s1 string字符串 the string
* @param s2 string字符串 the string
* @return string字符串
*/
string LCS(string s1, string s2)
{
// write code here
const int len1 = s1.size(), len2 = s2.size();
vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0));
string res = "";
for (int i = 1; i <= len1; i++)
{
for (int j = 1; j <= len2; j++)
{
if (s1[i - 1] == s2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else
{
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); // note
}
}
}
for (int i = len1, j = len2; dp[i][j] >= 1;)
{
if (s1[i - 1] == s2[j - 1])
{
res += s1[i - 1];
i--;
j--; //根据递推公式可得
}
else
{
if (dp[i - 1][j] >= dp[i][j - 1])
i--; //说明当前最大是由左边转换而来的
else
{
j--;
}
}
}
reverse(res.begin(), res.end());
// return res;需要判断是否为空
return res.empty()? "-1":res;
}
};

京公网安备 11010502036488号