题目链接:http://poj.org/problem?id=3281

题意:给你n头牛,F种吃的,D种喝的,每头牛对某些吃的喝的情有独钟,每种吃的  和  喝的  只能给一头牛,一头牛只能得到一

种吃的一种喝的,而且一头牛必须同时获得吃的和喝的 才能被满足   问最多有多少头牛可以满足 

一个最大流模板题,不过建图容易出错,需要注意的是牛需要拆点就行了。

是一个二分匹配问题,不过是两个条件必须满足,所以牛 需要拆点。

#include <algorithm>
#include <vector>
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = (1ll << 31) - 1;
const int mavn = 1e5+5;
const int maxn = 1e5+5;
#define ll long long
struct Edge{
    int to;
    int cap;
    int rev;
    Edge(){}
    Edge(int to,int d,int c):to(to),cap(d),rev(c){}
} ;
vector<Edge> v[mavn];

int n, m, s, t,F,D;
void addEdge(int from, int to, int cap){
    v[from].push_back(Edge(to, cap,v[to].size()));
    v[to].push_back(Edge(from, 0,v[from].size()-1));//单向边置为零,无向边置为cap,不然会多加边
}
int d[mavn],cnt, cur[mavn];
int DFS(int u, int flow){
    if (u == t || !flow) return flow;
    int ans = 0, tmp_flow;
    for (int& i = cur[u]; i < v[u].size(); i++){
        int to = v[u][i].to;
        if (d[to] == d[u] + 1 && v[u][i].cap > 0){
            tmp_flow = DFS(to, min(flow, v[u][i].cap));
            if(tmp_flow > 0) {
                flow -= tmp_flow;
                v[u][i].cap -= tmp_flow;
                ans += tmp_flow;
                v[to][v[u][i].rev].cap += tmp_flow;
                if (!flow)
                    break;
            }
        }
    }
    if (!ans) d[u] = -1;
    return ans;
}
bool BFS(){
    for(int i=s;i<=t+10;i++) d[i] = -1;
    queue<int> que;
    que.push(s);
    d[s] = 0;
    int u, _new;
    while (!que.empty()){
        u = que.front();
        que.pop();
        for (int i = 0; i < v[u].size(); i++){
            _new = v[u][i].to;
            if (d[_new] == -1 && v[u][i].cap > 0){
                d[_new] = d[u] + 1;
                que.push(_new);
            }
        }
    }
    return (d[t] != -1);
}

int  dinic(){
    int max_flow = 0;
    while (BFS()){
        for(int i=s;i<=t+10;i++) cur[i] = 0;
        int tt;
        while((tt = DFS(s,MAX)) > 0) max_flow += tt;
    }
    return max_flow;
}

int T, x, y;

int main(){
    while(scanf("%d%d%d",&n,&F,&D)!=EOF){
        s = 0, t = 2*n+F+D+1;
        for(int i=0;i<=t;i++) v[i].clear();
        for(int i=1;i<=n;i++) {
            scanf("%d%d",&x,&y);
            addEdge(i,i+n,1);
            while(x--) {
                scanf("%d",&m);
                addEdge(m+2*n,i,1);
            }
            while(y--) {
                scanf("%d",&m);
                addEdge(i+n,m+2*n+F,1);
            }
        }
        for(int i=1;i<=F;i++) {
            addEdge(s,i+2*n,1);
        }
        for(int i=1;i<=D;i++) {
            addEdge(i+2*n+F,t,1);
        }
        printf("%d\n",dinic());
    }
    return 0;
}