A. Groundhog and 2-Power Representation

题意:给一个正则表达式,求正则表达式的值。
例子:
2(0)=2^0
2(2+2(0))=2^(2+2^0)

分析:队友写的py.

a = input()

a = a.replace('(', '**(')

print(eval(a))

B. Groundhog and Apple Tree

题意:给定有n个节点一颗无根树,每个节点有点权图片说明,每条边有边权 图片说明 .从起点1出发遍历所有点,并且保证每条边最多遍历1次,每次遍历一条边,体力减去该边权大小,遍历点时体力获得点权值,如果要保证行进时候当前体力不小于0,那么从1开始初始值最小是多少。

分析:贪心+树形dp。

  • 维护每颗子树两个信息。
    图片说明 遍历以x为根节点的子树的所有节点,初始值最小是多少。
    图片说明 遍历以x为根节点的子树的所有节点,体力增加值。
    显然dp方程的转移跟路径决策有关。

  • 那么当前行进x节点,如何决策选择那个子节点继续行进。
    采用贪心策略:
    对于图片说明 的子节点(肯定是先遍历它们),我们显然是先遍历体力增加值大的子节点,如果体力增加值相同那么先遍历所需要的体力初始值小的子节点。

  • 对于图片说明 的节点,我们可以列一个方程:
    对于x的两个子节点图片说明 .
    图片说明图片说明 后,那么对于要图片说明 点,初始体力最小值为:图片说明
    图片说明图片说明 后,那么对于要图片说明 点,初始体力最小值为:图片说明
    那我们按照 图片说明 为关键字进行从小到大排序,然后遍历选择即可。

#include<bits/stdc++.h>


using namespace std;
typedef long long ll;

const int maxn=2e5+10;

vector<pair<int,int>> g[maxn];

ll dp[maxn],siz[maxn];
int a[maxn];

void dfs( int x,int f )
{
    dp[x]=0;
    siz[x]=a[x];
    vector< pair<ll,ll> > p1,p2;
    for( pair<int,int> i:g[x] )
    {
        int v=i.first,w=i.second;
        if( v==f ) continue;
        dfs(v,x);
        siz[v]-=2*w;
        dp[v]=min(dp[v]-w,siz[v]);
        if( siz[v]>=0 ) p1.push_back( make_pair( dp[v],siz[v] ) );
        else p2.push_back( make_pair( dp[v],siz[v] ) );
    }

    sort(p1.begin(),p1.end(),[&]( pair<int,int> x,pair<int,int> y) {
        return x.first>y.first || x.first==y.first && x.second>y.second;    
    });

    sort(p2.begin(),p2.end(),[&]( pair<int,int> x,pair<int,int> y) {
        return x.first+y.second<y.first+x.second;    
    });

    for( pair<ll,ll> v: p1 )
    {
        dp[x]=min(dp[x],siz[x]+v.first);
        siz[x]+=v.second;
    }
    for( pair<ll,ll> v:p2 )
    {
        dp[x]=min(dp[x],siz[x]+v.first);
        siz[x]+=v.second;
    }

}


int main()
{
   int t;
   scanf("%d",&t);
   while( t-- )
   {
         int n;
         scanf("%d",&n);
      for( int i=1;i<=n;i++ ) scanf("%d",&a[i]),g[i].clear();

      for( int i=1;i<n;i++ )
      {
           int u,v,w;
           scanf("%d%d%d",&u,&v,&w);
           g[u].push_back( make_pair(v,w) );
           g[v].push_back( make_pair(u,w) );
      }         
      dfs(1,0);
      printf("%lld\n",-dp[1]);
   }
}

E.Groundhog Chasing Death

题意:求图片说明
图片说明

分析:利用唯一分解定理将图片说明 分解成若干个质因子次方的乘积。那么式子只用记录两个共有质因子次方的gcd值。
根据数据范围,我们可以枚举图片说明 进行计算,首先我们预处理出两个树共有的质因子,然后问题就转化成了求每一个共有质因子的图片说明 ,图片说明 表示图片说明 对应质因子的次方数,图片说明 表示图片说明 对应质因子的次方数。
然后细致讨论一下大小就可以过了。

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;

const ll maxn=1e6+10;
const ll mod=998244353;
const ll modd=998244352;

inline ll read()
{
    ll x=0;char s=getchar();
    for( ;isdigit(s);x=x*10+s-48,s=getchar());
    return x;
}

void print( ll x )
{
    if( x<0 ) x=-x,putchar('-');
    if( x>9 ) print(x/10);
    putchar( x%10+'0' );
}


ll prime[5000000];//保存素数
ll vis[maxn];//初始化
ll cnt;

void getprime( ll n )
{
    cnt=0;
    memset(vis,0,sizeof(vis));
    for( ll i=2;i<n;i++ )
    {
        if( vis[i]==0 ) prime[cnt++]=i;
        for( int j=0;j<cnt && i*prime[j]<n;j++ )
        {
            vis[i*prime[j]]=1;
            // vis[i*prime[j]]=prime[j];
            if( i%prime[j]==0 )  break;
        }
    }
}



vector<pair<ll,ll>> p1,p2;
ll cnt1,cnt2;


void solve( ll n ,vector<pair<ll,ll>>  &p )
{

    for( ll i=0; prime[i]<=n && i<cnt;i++ )
    {
        if( n%prime[i]==0 )
        {
            int tmp=0;
            while( n%prime[i]==0 )
            {
                tmp++;
                n/=prime[i];
            }
            p.push_back( make_pair(prime[i],tmp) );
            if( n==1 ) break;
        }
    }

    if( n>1 ) p.push_back( make_pair(n,1) );
}


ll poww( ll a,ll b )  // 快速幂
{
    ll ans = 1;
    while(b){
        if(b&1)
            ans=(ans*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ans%mod;
}


vector< pair<ll,ll> > ans;
vector< pair<ll,ll> > id;

void get_ans( ll now,ll l,ll r )
{
    for( int i=0;i<ans.size();i++ )
    {
        ll lef=p1[id[i].first].second,rig=p2[id[i].second].second;
        //lef*=now;rig*=l;
        ll mins=min(lef*now,rig*l);

        if( mins==lef*now ) ans[i].second=(ans[i].second+(r-l+1)*mins)%modd;
        else
        {
            if( rig*r<=lef*now )
            {
                ll all=(rig*l+rig*r)*(r-l+1)/2;
                ans[i].second=(ans[i].second+all)%modd;
            }
            else
            {
                ll k=lef*now/rig;
                ll all1=( l+k )*(k-l+1)/2;
                all1=all1*rig%modd;
                ll all2=(r-k)*lef*now;
                ans[i].second=(ans[i].second+all1+all2)%modd;
            }
        }
    }
}

int main()
{
//  int sum=0,er=0;
//  for( int i=1;i<=10;i++ )
//  {
//      er+=i-1;
//      cout<<er+i*(10-i+1)<<endl;
//  }
//  cout<<sum<<endl;

    getprime(1e6);
    ll a=read(),b=read(),c=read(),d=read(),x=read(),y=read();

    solve(x,p1);
    solve(y,p2);
    cnt1=p1.size(),cnt2=p2.size();

    for( ll i=0;i<cnt1;i++ )
    {
        for( ll j=0;j<cnt2;j++ )
        {
            if( p1[i].first==p2[j].first )
            {
                ans.push_back( make_pair(p1[i].first,0) );
                id.push_back( make_pair(i,j) );
            }
        }
    }

    for( ll i=a;i<=b;i++ )
    {
        get_ans(i,c,d);
    }
    ll res=1;
    for( ll i=0;i<ans.size();i++ )
    {
    //  pair<int,ll> tmp=ans[i];
        res=(res*poww(ans[i].first,ans[i].second))%mod;
    }

    print(res);
}

F.Groundhog Looking Dowdy

题意:n天每天有图片说明 衣服,每件衣服有个魅力值,你要从中选m件衣服,每件衣服必须是不同天的,求选择方案中衣服的最大美丽值和最小美丽值的差异最小是多少。
分析:将所有衣服按所属天数编号,然后根据每件衣服的美丽值从小到大排序。二分选择方案的差异值,然后用移动指针维护滑窗进行判断。

#include<bits/stdc++.h>

using namespace std;

const int maxn=2e6+10;


vector<pair<int,int>> p;
int n,m;
int vis[maxn];

inline int read()
{
    int x=0;char s=getchar();
    for( ;isdigit(s);x=x*10+s-48,s=getchar());
    return x;
}


bool check( int x )
{
    int l=0;
    int num=0;
    for( int i=1;i<=n;i++ ) vis[i]=0;
    for( int i=0;i<p.size();i++ )
    {
    //    pair<int,int> tmp=p[i],tmp1=p[l];
        if( p[i].first<=x+p[l].first ) 
        {
            vis[p[i].second]++;
            if( vis[p[i].second]==1 ) num++;
            if( num>=m ) return true;
        }
        else
        {
            while( p[i].first>x+p[l].first )
            {
                vis[p[l].second]--;
                if( vis[p[l].second]==0 ) num--;
                l++;
            }
            vis[p[i].second]++;
            if( vis[p[i].second]==1 ) num++;
            if( num>=m ) return true;
        }
    }
    return false;
}


int main()
{
    n=read(),m=read();
    for( int i=1;i<=n;i++ )
    {
        int num=read();
        int x;
        for( int j=0;j<num;j++ )
        {
            x=read();
            //g[i].push_back(x);
            p.push_back( make_pair(x,i) );
        }
    }
    sort(p.begin(),p.end());
    p.erase( unique(p.begin(),p.end()),p.end());


    int l=0,r=1e9,ans;
    while( l<=r )
    {
        int mid=l+r>>1;
        if( check(mid) )
        {
            ans=mid;
            r=mid-1;
        }
        else l=mid+1;
    }
    printf("%d\n",ans);

}

I.The Crime-solving Plan of Groundhog

题意:给定n个0-9的数,将它们组合成两个非前导零的正整数,求他们乘积最小的组合答案。输出乘积。
分析:将n个数从小到大排序。组合最优方案:一个是1位数,一个是n-1位数。1位数肯定选最小的非零数。n-1位数的最高位一定是次小非零数,其他位从小到大选取。

#include<bits/stdc++.h>
using namespace std;

// base and base_digits must be consistent
constexpr int base = 1000000000;
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);

constexpr int base_digits = 9;
struct bigint
{
    // value == 0 is represented by empty z
    vector<int> z; // digits

    // sign == 1 <==> value >= 0
    // sign == -1 <==> value < 0
    int sign;

    bigint() : sign(1) {}

    bigint(long long v) { *this = v; }

    bigint& operator=(long long v)
    {
        sign = v < 0 ? -1 : 1;
        v *= sign;
        z.clear();
        for (; v > 0; v = v / base)
            z.push_back((int)(v % base));
        return *this;
    }

    bigint(const string& s) { read(s); }

    bigint& operator+=(const bigint& other)
    {
        if (sign == other.sign)
        {
            for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
            {
                if (i == z.size())
                    z.push_back(0);
                z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
                carry = z[i] >= base;
                if (carry)
                    z[i] -= base;
            }
        }
        else if (other != 0 /* prevent infinite loop */)
        {
            *this -= -other;
        }
        return *this;
    }

    friend bigint operator+(bigint a, const bigint& b)
    {
        return a += b;
    }

    bigint& operator-=(const bigint& other)
    {
        if (sign == other.sign)
        {
            if (sign == 1 && *this >= other || sign == -1 && *this <= other)
            {
                for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
                {
                    z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
                    carry = z[i] < 0;
                    if (carry)
                        z[i] += base;
                }
                trim();
            }
            else
            {
                *this = other - *this;
                this->sign = -this->sign;
            }
        }
        else
        {
            *this += -other;
        }
        return *this;
    }

    friend bigint operator-(bigint a, const bigint& b)
    {
        return a -= b;
    }

    bigint& operator*=(int v)
    {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < z.size() || carry; ++i)
        {
            if (i == z.size())
                z.push_back(0);
            long long cur = (long long)z[i] * v + carry;
            carry = (int)(cur / base);
            z[i] = (int)(cur % base);
        }
        trim();
        return *this;
    }

    bigint operator*(int v) const
    {
        return bigint(*this) *= v;
    }

    friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
    {
        int norm = base / (b1.z.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.z.resize(a.z.size());

        for (int i = (int)a.z.size() - 1; i >= 0; i--)
        {
            r *= base;
            r += a.z[i];
            int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
            int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
            int d = (int)(((long long)s1 * base + s2) / b.z.back());
            r -= b * d;
            while (r < 0)
                r += b, --d;
            q.z[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return {q, r / norm};
    }

    friend bigint sqrt(const bigint& a1)
    {
        bigint a = a1;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        int n = a.z.size();

        int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int norm = base / (firstDigit + 1);
        a *= norm;
        a *= norm;
        while (a.z.empty() || a.z.size() % 2 == 1)
            a.z.push_back(0);

        bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
        firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
        int q = firstDigit;
        bigint res;

        for (int j = n / 2 - 1; j >= 0; j--)
        {
            for (;; --q)
            {
                bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
                if (r1 >= 0)
                {
                    r = r1;
                    break;
                }
            }
            res *= base;
            res += q;

            if (j > 0)
            {
                int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
                int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
                int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
                q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2));
            }
        }

        res.trim();
        return res / norm;
    }

    bigint operator/(const bigint& v) const
    {
        return divmod(*this, v).first;
    }

    bigint operator%(const bigint& v) const
    {
        return divmod(*this, v).second;
    }

    bigint& operator/=(int v)
    {
        if (v < 0)
            sign = -sign, v = -v;
        for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i)
        {
            long long cur = z[i] + rem * (long long)base;
            z[i] = (int)(cur / v);
            rem = (int)(cur % v);
        }
        trim();
        return *this;
    }

    bigint operator/(int v) const
    {
        return bigint(*this) /= v;
    }

    int operator%(int v) const
    {
        if (v < 0)
            v = -v;
        int m = 0;
        for (int i = (int)z.size() - 1; i >= 0; --i)
            m = (int)((z[i] + m * (long long)base) % v);
        return m * sign;
    }

    bigint& operator*=(const bigint& v)
    {
        *this = *this * v;
        return *this;
    }

    bigint& operator/=(const bigint& v)
    {
        *this = *this / v;
        return *this;
    }

    bool operator<(const bigint& v) const
    {
        if (sign != v.sign)
            return sign < v.sign;
        if (z.size() != v.z.size())
            return z.size() * sign < v.z.size() * v.sign;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            if (z[i] != v.z[i])
                return z[i] * sign < v.z[i] * sign;
        return false;
    }

    bool operator>(const bigint& v) const
    {
        return v < *this;
    }

    bool operator<=(const bigint& v) const
    {
        return !(v < *this);
    }

    bool operator>=(const bigint& v) const
    {
        return !(*this < v);
    }

    bool operator==(const bigint& v) const
    {
        return !(*this < v) && !(v < *this);
    }

    bool operator!=(const bigint& v) const
    {
        return *this < v || v < *this;
    }

    void trim()
    {
        while (!z.empty() && z.back() == 0)
            z.pop_back();
        if (z.empty())
            sign = 1;
    }

    bool isZero() const
    {
        return z.empty();
    }

    friend bigint operator-(bigint v)
    {
        if (!v.z.empty())
            v.sign = -v.sign;
        return v;
    }

    bigint abs() const
    {
        return sign == 1 ? *this : -*this;
    }

    long long longValue() const
    {
        long long res = 0;
        for (int i = (int)z.size() - 1; i >= 0; i--)
            res = res * base + z[i];
        return res * sign;
    }

    friend bigint gcd(const bigint& a, const bigint& b)
    {
        return b.isZero() ? a : gcd(b, a % b);
    }

    friend bigint lcm(const bigint& a, const bigint& b)
    {
        return a / gcd(a, b) * b;
    }

    void read(const string& s)
    {
        sign = 1;
        z.clear();
        int pos = 0;
        while (pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
        {
            if (s[pos] == '-')
                sign = -sign;
            ++pos;
        }
        for (int i = (int)s.size() - 1; i >= pos; i -= base_digits)
        {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            z.push_back(x);
        }
        trim();
    }

    friend istream& operator>>(istream& stream, bigint& v)
    {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream& operator<<(ostream& stream, const bigint& v)
    {
        if (v.sign == -1)
            stream << '-';
        stream << (v.z.empty() ? 0 : v.z.back());
        for (int i = (int)v.z.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.z[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
    {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < p.size(); i++)
            p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int v : a)
        {
            cur += v * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits)
            {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int)cur);
        while (!res.empty() && res.back() == 0)
            res.pop_back();
        return res;
    }

    typedef vector<long long> vll;

    static vll karatsubaMultiply(const vll& a, const vll& b)
    {
        int n = a.size();
        vll res(n + n);
        if (n <= 32)
        {
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    res[i + j] += a[i] * b[j];
            return res;
        }

        int k = n >> 1;
        vll a1(a.begin(), a.begin() + k);
        vll a2(a.begin() + k, a.end());
        vll b1(b.begin(), b.begin() + k);
        vll b2(b.begin() + k, b.end());

        vll a1b1 = karatsubaMultiply(a1, b1);
        vll a2b2 = karatsubaMultiply(a2, b2);

        for (int i = 0; i < k; i++)
            a2[i] += a1[i];
        for (int i = 0; i < k; i++)
            b2[i] += b1[i];

        vll r = karatsubaMultiply(a2, b2);
        for (int i = 0; i < a1b1.size(); i++)
            r[i] -= a1b1[i];
        for (int i = 0; i < a2b2.size(); i++)
            r[i] -= a2b2[i];

        for (int i = 0; i < r.size(); i++)
            res[i + k] += r[i];
        for (int i = 0; i < a1b1.size(); i++)
            res[i] += a1b1[i];
        for (int i = 0; i < a2b2.size(); i++)
            res[i + n] += a2b2[i];
        return res;
    }

    bigint operator*(const bigint& v) const
    {
        vector<int> a6 = convert_base(this->z, base_digits, 6);
        vector<int> b6 = convert_base(v.z, base_digits, 6);
        vll a(a6.begin(), a6.end());
        vll b(b6.begin(), b6.end());
        while (a.size() < b.size())
            a.push_back(0);
        while (b.size() < a.size())
            b.push_back(0);
        while (a.size() & (a.size() - 1))
            a.push_back(0), b.push_back(0);
        vll c = karatsubaMultiply(a, b);
        bigint res;
        res.sign = sign * v.sign;
        for (int i = 0, carry = 0; i < c.size(); i++)
        {
            long long cur = c[i] + carry;
            res.z.push_back((int)(cur % 1000000));
            carry = (int)(cur / 1000000);
        }
        res.z = convert_base(res.z, 6, base_digits);
        res.trim();
        return res;
    }
};


char s[100000];


int a[100005];

int main()
{
    IOS
    int t;
    scanf("%d",&t);
    while( t-- )
    {
        int n;
        scanf("%d",&n);
        for( int i=1;i<=n;i++ ) scanf("%d",&a[i]);
        sort(a+1,a+1+n);
        bigint c=0,d=0;
        int pos=-1; 

        for( int i=1;i<=n;i++ )
        {
            if( a[i]!=0 ) 
            {
                c=a[i],pos=i;
                break;
            }
        }
        string s;

        s=(char)(a[pos+1]+'0');

        d=a[pos+1];
        for( int i=1;i<=n;i++ )
        {
            if( i==pos || i==pos+1 ) continue;
            char c=a[i]+'0';
            s+=c;
        }
        d.read(s);


    //    cout<<c<<" "<<d<<endl;
        bigint ans=c*d;
        cout<<ans<<"\n";

    }




}

K.The Flee Plan of Groundhog

题意:给定一颗n个节点的无向树,土拨鼠在节点1的位置,橘子在节点n的位置,前t面土拨鼠往节点n移动,t秒之后土拨鼠开始逃跑,橘子开始追击土拨鼠,土拨鼠的速度是每秒走一条边,橘子的速度是每秒走两条边,求土拨鼠最远能逃多久。输出逃跑时间。
分析:我们以节点n为树根建树。
首先判断t秒内是否到了节点n,如果已经到了输出0,否则土拨鼠的初始位置是pos.
对于土拨鼠而言,肯定要尽可能跑最长链,两种走法,一种是一直远离树根跑下去,一种是先往树根跑一段距离,然后从某个节点开始往最长的叶子节点方向跑。我们将这些方案都枚举然后取个max。

#include<bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;


int n,m,t;

inline int read()
{
    int x=0;char s=getchar();
    for( ;isdigit(s);x=x*10+s-48,s=getchar());
    return x;
}

int fa[maxn],siz[maxn],d[maxn];
vector<int> g[maxn];


void dfs( int x,int f )
{
    fa[x]=f;
    siz[x]=0;
    d[x]=d[f]+1;
    for( int v:g[x] )
    {
        if( v==f ) continue;
        dfs(v,x);
        siz[x]=max(siz[v]+1,siz[x]);
    }
} 

int ans;

void solve( int now,int c )
{
    if( c<=0 ) return;
    if( 2*c<=siz[now] )
    {
        ans=max(ans,c);
    }
    else
    {
        int len=(siz[now]+c+1)/2;
        ans=max(ans,len);
//        printf("%d\n",len);
    }
}



int main()
{
    n=read(),t=read();
    for( int i=1;i<n;i++ )
    {
        int u,v;
        u=read(),v=read();
        g[u].push_back(v);
        g[v].push_back(u);
    }
    dfs(n,0);
    if( d[1]-d[n]<=t )
    {
        puts("0");
        return 0;
    }
    else
    {
        int now=1;
        while( t-- ) now=fa[now];
        int c=d[now]-d[n];
        int cnt=0;
        while( now!=n )
        {
            solve(now,c-cnt*3);
            cnt++;
            now=fa[now];
        }
        printf("%d\n",ans);



    }
}
/*
12 1
10 9
9 8
8 7
7 1
7 6
6 5
5 4
4 3
3 2
11 10
12 11
*/