A. Groundhog and 2-Power Representation
题意:给一个正则表达式,求正则表达式的值。
例子:
2(0)=2^0
2(2+2(0))=2^(2+2^0)
分析:队友写的py.
a = input() a = a.replace('(', '**(') print(eval(a))
B. Groundhog and Apple Tree
题意:给定有n个节点一颗无根树,每个节点有点权,每条边有边权 .从起点1出发遍历所有点,并且保证每条边最多遍历1次,每次遍历一条边,体力减去该边权大小,遍历点时体力获得点权值,如果要保证行进时候当前体力不小于0,那么从1开始初始值最小是多少。
分析:贪心+树形dp。
维护每颗子树两个信息。
遍历以x为根节点的子树的所有节点,初始值最小是多少。
遍历以x为根节点的子树的所有节点,体力增加值。
显然dp方程的转移跟路径决策有关。那么当前行进x节点,如何决策选择那个子节点继续行进。
采用贪心策略:
对于 的子节点(肯定是先遍历它们),我们显然是先遍历体力增加值大的子节点,如果体力增加值相同那么先遍历所需要的体力初始值小的子节点。对于 的节点,我们可以列一个方程:
对于x的两个子节点 .
先 后,那么对于要 点,初始体力最小值为:
先 后,那么对于要 点,初始体力最小值为:
那我们按照 为关键字进行从小到大排序,然后遍历选择即可。
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn=2e5+10; vector<pair<int,int>> g[maxn]; ll dp[maxn],siz[maxn]; int a[maxn]; void dfs( int x,int f ) { dp[x]=0; siz[x]=a[x]; vector< pair<ll,ll> > p1,p2; for( pair<int,int> i:g[x] ) { int v=i.first,w=i.second; if( v==f ) continue; dfs(v,x); siz[v]-=2*w; dp[v]=min(dp[v]-w,siz[v]); if( siz[v]>=0 ) p1.push_back( make_pair( dp[v],siz[v] ) ); else p2.push_back( make_pair( dp[v],siz[v] ) ); } sort(p1.begin(),p1.end(),[&]( pair<int,int> x,pair<int,int> y) { return x.first>y.first || x.first==y.first && x.second>y.second; }); sort(p2.begin(),p2.end(),[&]( pair<int,int> x,pair<int,int> y) { return x.first+y.second<y.first+x.second; }); for( pair<ll,ll> v: p1 ) { dp[x]=min(dp[x],siz[x]+v.first); siz[x]+=v.second; } for( pair<ll,ll> v:p2 ) { dp[x]=min(dp[x],siz[x]+v.first); siz[x]+=v.second; } } int main() { int t; scanf("%d",&t); while( t-- ) { int n; scanf("%d",&n); for( int i=1;i<=n;i++ ) scanf("%d",&a[i]),g[i].clear(); for( int i=1;i<n;i++ ) { int u,v,w; scanf("%d%d%d",&u,&v,&w); g[u].push_back( make_pair(v,w) ); g[v].push_back( make_pair(u,w) ); } dfs(1,0); printf("%lld\n",-dp[1]); } }
E.Groundhog Chasing Death
题意:求 。
分析:利用唯一分解定理将 分解成若干个质因子次方的乘积。那么式子只用记录两个共有质因子次方的gcd值。
根据数据范围,我们可以枚举 进行计算,首先我们预处理出两个树共有的质因子,然后问题就转化成了求每一个共有质因子的 , 表示 对应质因子的次方数, 表示 对应质因子的次方数。
然后细致讨论一下大小就可以过了。
#include<bits/stdc++.h> using namespace std; typedef long long ll; const ll maxn=1e6+10; const ll mod=998244353; const ll modd=998244352; inline ll read() { ll x=0;char s=getchar(); for( ;isdigit(s);x=x*10+s-48,s=getchar()); return x; } void print( ll x ) { if( x<0 ) x=-x,putchar('-'); if( x>9 ) print(x/10); putchar( x%10+'0' ); } ll prime[5000000];//保存素数 ll vis[maxn];//初始化 ll cnt; void getprime( ll n ) { cnt=0; memset(vis,0,sizeof(vis)); for( ll i=2;i<n;i++ ) { if( vis[i]==0 ) prime[cnt++]=i; for( int j=0;j<cnt && i*prime[j]<n;j++ ) { vis[i*prime[j]]=1; // vis[i*prime[j]]=prime[j]; if( i%prime[j]==0 ) break; } } } vector<pair<ll,ll>> p1,p2; ll cnt1,cnt2; void solve( ll n ,vector<pair<ll,ll>> &p ) { for( ll i=0; prime[i]<=n && i<cnt;i++ ) { if( n%prime[i]==0 ) { int tmp=0; while( n%prime[i]==0 ) { tmp++; n/=prime[i]; } p.push_back( make_pair(prime[i],tmp) ); if( n==1 ) break; } } if( n>1 ) p.push_back( make_pair(n,1) ); } ll poww( ll a,ll b ) // 快速幂 { ll ans = 1; while(b){ if(b&1) ans=(ans*a)%mod; a=(a*a)%mod; b>>=1; } return ans%mod; } vector< pair<ll,ll> > ans; vector< pair<ll,ll> > id; void get_ans( ll now,ll l,ll r ) { for( int i=0;i<ans.size();i++ ) { ll lef=p1[id[i].first].second,rig=p2[id[i].second].second; //lef*=now;rig*=l; ll mins=min(lef*now,rig*l); if( mins==lef*now ) ans[i].second=(ans[i].second+(r-l+1)*mins)%modd; else { if( rig*r<=lef*now ) { ll all=(rig*l+rig*r)*(r-l+1)/2; ans[i].second=(ans[i].second+all)%modd; } else { ll k=lef*now/rig; ll all1=( l+k )*(k-l+1)/2; all1=all1*rig%modd; ll all2=(r-k)*lef*now; ans[i].second=(ans[i].second+all1+all2)%modd; } } } } int main() { // int sum=0,er=0; // for( int i=1;i<=10;i++ ) // { // er+=i-1; // cout<<er+i*(10-i+1)<<endl; // } // cout<<sum<<endl; getprime(1e6); ll a=read(),b=read(),c=read(),d=read(),x=read(),y=read(); solve(x,p1); solve(y,p2); cnt1=p1.size(),cnt2=p2.size(); for( ll i=0;i<cnt1;i++ ) { for( ll j=0;j<cnt2;j++ ) { if( p1[i].first==p2[j].first ) { ans.push_back( make_pair(p1[i].first,0) ); id.push_back( make_pair(i,j) ); } } } for( ll i=a;i<=b;i++ ) { get_ans(i,c,d); } ll res=1; for( ll i=0;i<ans.size();i++ ) { // pair<int,ll> tmp=ans[i]; res=(res*poww(ans[i].first,ans[i].second))%mod; } print(res); }
F.Groundhog Looking Dowdy
题意:n天每天有 衣服,每件衣服有个魅力值,你要从中选m件衣服,每件衣服必须是不同天的,求选择方案中衣服的最大美丽值和最小美丽值的差异最小是多少。
分析:将所有衣服按所属天数编号,然后根据每件衣服的美丽值从小到大排序。二分选择方案的差异值,然后用移动指针维护滑窗进行判断。
#include<bits/stdc++.h> using namespace std; const int maxn=2e6+10; vector<pair<int,int>> p; int n,m; int vis[maxn]; inline int read() { int x=0;char s=getchar(); for( ;isdigit(s);x=x*10+s-48,s=getchar()); return x; } bool check( int x ) { int l=0; int num=0; for( int i=1;i<=n;i++ ) vis[i]=0; for( int i=0;i<p.size();i++ ) { // pair<int,int> tmp=p[i],tmp1=p[l]; if( p[i].first<=x+p[l].first ) { vis[p[i].second]++; if( vis[p[i].second]==1 ) num++; if( num>=m ) return true; } else { while( p[i].first>x+p[l].first ) { vis[p[l].second]--; if( vis[p[l].second]==0 ) num--; l++; } vis[p[i].second]++; if( vis[p[i].second]==1 ) num++; if( num>=m ) return true; } } return false; } int main() { n=read(),m=read(); for( int i=1;i<=n;i++ ) { int num=read(); int x; for( int j=0;j<num;j++ ) { x=read(); //g[i].push_back(x); p.push_back( make_pair(x,i) ); } } sort(p.begin(),p.end()); p.erase( unique(p.begin(),p.end()),p.end()); int l=0,r=1e9,ans; while( l<=r ) { int mid=l+r>>1; if( check(mid) ) { ans=mid; r=mid-1; } else l=mid+1; } printf("%d\n",ans); }
I.The Crime-solving Plan of Groundhog
题意:给定n个0-9的数,将它们组合成两个非前导零的正整数,求他们乘积最小的组合答案。输出乘积。
分析:将n个数从小到大排序。组合最优方案:一个是1位数,一个是n-1位数。1位数肯定选最小的非零数。n-1位数的最高位一定是次小非零数,其他位从小到大选取。
#include<bits/stdc++.h> using namespace std; // base and base_digits must be consistent constexpr int base = 1000000000; #define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); constexpr int base_digits = 9; struct bigint { // value == 0 is represented by empty z vector<int> z; // digits // sign == 1 <==> value >= 0 // sign == -1 <==> value < 0 int sign; bigint() : sign(1) {} bigint(long long v) { *this = v; } bigint& operator=(long long v) { sign = v < 0 ? -1 : 1; v *= sign; z.clear(); for (; v > 0; v = v / base) z.push_back((int)(v % base)); return *this; } bigint(const string& s) { read(s); } bigint& operator+=(const bigint& other) { if (sign == other.sign) { for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) { if (i == z.size()) z.push_back(0); z[i] += carry + (i < other.z.size() ? other.z[i] : 0); carry = z[i] >= base; if (carry) z[i] -= base; } } else if (other != 0 /* prevent infinite loop */) { *this -= -other; } return *this; } friend bigint operator+(bigint a, const bigint& b) { return a += b; } bigint& operator-=(const bigint& other) { if (sign == other.sign) { if (sign == 1 && *this >= other || sign == -1 && *this <= other) { for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) { z[i] -= carry + (i < other.z.size() ? other.z[i] : 0); carry = z[i] < 0; if (carry) z[i] += base; } trim(); } else { *this = other - *this; this->sign = -this->sign; } } else { *this += -other; } return *this; } friend bigint operator-(bigint a, const bigint& b) { return a -= b; } bigint& operator*=(int v) { if (v < 0) sign = -sign, v = -v; for (int i = 0, carry = 0; i < z.size() || carry; ++i) { if (i == z.size()) z.push_back(0); long long cur = (long long)z[i] * v + carry; carry = (int)(cur / base); z[i] = (int)(cur % base); } trim(); return *this; } bigint operator*(int v) const { return bigint(*this) *= v; } friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1) { int norm = base / (b1.z.back() + 1); bigint a = a1.abs() * norm; bigint b = b1.abs() * norm; bigint q, r; q.z.resize(a.z.size()); for (int i = (int)a.z.size() - 1; i >= 0; i--) { r *= base; r += a.z[i]; int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0; int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0; int d = (int)(((long long)s1 * base + s2) / b.z.back()); r -= b * d; while (r < 0) r += b, --d; q.z[i] = d; } q.sign = a1.sign * b1.sign; r.sign = a1.sign; q.trim(); r.trim(); return {q, r / norm}; } friend bigint sqrt(const bigint& a1) { bigint a = a1; while (a.z.empty() || a.z.size() % 2 == 1) a.z.push_back(0); int n = a.z.size(); int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]); int norm = base / (firstDigit + 1); a *= norm; a *= norm; while (a.z.empty() || a.z.size() % 2 == 1) a.z.push_back(0); bigint r = (long long)a.z[n - 1] * base + a.z[n - 2]; firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]); int q = firstDigit; bigint res; for (int j = n / 2 - 1; j >= 0; j--) { for (;; --q) { bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0); if (r1 >= 0) { r = r1; break; } } res *= base; res += q; if (j > 0) { int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0; int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0; int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0; q = (int)(((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2)); } } res.trim(); return res / norm; } bigint operator/(const bigint& v) const { return divmod(*this, v).first; } bigint operator%(const bigint& v) const { return divmod(*this, v).second; } bigint& operator/=(int v) { if (v < 0) sign = -sign, v = -v; for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i) { long long cur = z[i] + rem * (long long)base; z[i] = (int)(cur / v); rem = (int)(cur % v); } trim(); return *this; } bigint operator/(int v) const { return bigint(*this) /= v; } int operator%(int v) const { if (v < 0) v = -v; int m = 0; for (int i = (int)z.size() - 1; i >= 0; --i) m = (int)((z[i] + m * (long long)base) % v); return m * sign; } bigint& operator*=(const bigint& v) { *this = *this * v; return *this; } bigint& operator/=(const bigint& v) { *this = *this / v; return *this; } bool operator<(const bigint& v) const { if (sign != v.sign) return sign < v.sign; if (z.size() != v.z.size()) return z.size() * sign < v.z.size() * v.sign; for (int i = (int)z.size() - 1; i >= 0; i--) if (z[i] != v.z[i]) return z[i] * sign < v.z[i] * sign; return false; } bool operator>(const bigint& v) const { return v < *this; } bool operator<=(const bigint& v) const { return !(v < *this); } bool operator>=(const bigint& v) const { return !(*this < v); } bool operator==(const bigint& v) const { return !(*this < v) && !(v < *this); } bool operator!=(const bigint& v) const { return *this < v || v < *this; } void trim() { while (!z.empty() && z.back() == 0) z.pop_back(); if (z.empty()) sign = 1; } bool isZero() const { return z.empty(); } friend bigint operator-(bigint v) { if (!v.z.empty()) v.sign = -v.sign; return v; } bigint abs() const { return sign == 1 ? *this : -*this; } long long longValue() const { long long res = 0; for (int i = (int)z.size() - 1; i >= 0; i--) res = res * base + z[i]; return res * sign; } friend bigint gcd(const bigint& a, const bigint& b) { return b.isZero() ? a : gcd(b, a % b); } friend bigint lcm(const bigint& a, const bigint& b) { return a / gcd(a, b) * b; } void read(const string& s) { sign = 1; z.clear(); int pos = 0; while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) { if (s[pos] == '-') sign = -sign; ++pos; } for (int i = (int)s.size() - 1; i >= pos; i -= base_digits) { int x = 0; for (int j = max(pos, i - base_digits + 1); j <= i; j++) x = x * 10 + s[j] - '0'; z.push_back(x); } trim(); } friend istream& operator>>(istream& stream, bigint& v) { string s; stream >> s; v.read(s); return stream; } friend ostream& operator<<(ostream& stream, const bigint& v) { if (v.sign == -1) stream << '-'; stream << (v.z.empty() ? 0 : v.z.back()); for (int i = (int)v.z.size() - 2; i >= 0; --i) stream << setw(base_digits) << setfill('0') << v.z[i]; return stream; } static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits) { vector<long long> p(max(old_digits, new_digits) + 1); p[0] = 1; for (int i = 1; i < p.size(); i++) p[i] = p[i - 1] * 10; vector<int> res; long long cur = 0; int cur_digits = 0; for (int v : a) { cur += v * p[cur_digits]; cur_digits += old_digits; while (cur_digits >= new_digits) { res.push_back(int(cur % p[new_digits])); cur /= p[new_digits]; cur_digits -= new_digits; } } res.push_back((int)cur); while (!res.empty() && res.back() == 0) res.pop_back(); return res; } typedef vector<long long> vll; static vll karatsubaMultiply(const vll& a, const vll& b) { int n = a.size(); vll res(n + n); if (n <= 32) { for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) res[i + j] += a[i] * b[j]; return res; } int k = n >> 1; vll a1(a.begin(), a.begin() + k); vll a2(a.begin() + k, a.end()); vll b1(b.begin(), b.begin() + k); vll b2(b.begin() + k, b.end()); vll a1b1 = karatsubaMultiply(a1, b1); vll a2b2 = karatsubaMultiply(a2, b2); for (int i = 0; i < k; i++) a2[i] += a1[i]; for (int i = 0; i < k; i++) b2[i] += b1[i]; vll r = karatsubaMultiply(a2, b2); for (int i = 0; i < a1b1.size(); i++) r[i] -= a1b1[i]; for (int i = 0; i < a2b2.size(); i++) r[i] -= a2b2[i]; for (int i = 0; i < r.size(); i++) res[i + k] += r[i]; for (int i = 0; i < a1b1.size(); i++) res[i] += a1b1[i]; for (int i = 0; i < a2b2.size(); i++) res[i + n] += a2b2[i]; return res; } bigint operator*(const bigint& v) const { vector<int> a6 = convert_base(this->z, base_digits, 6); vector<int> b6 = convert_base(v.z, base_digits, 6); vll a(a6.begin(), a6.end()); vll b(b6.begin(), b6.end()); while (a.size() < b.size()) a.push_back(0); while (b.size() < a.size()) b.push_back(0); while (a.size() & (a.size() - 1)) a.push_back(0), b.push_back(0); vll c = karatsubaMultiply(a, b); bigint res; res.sign = sign * v.sign; for (int i = 0, carry = 0; i < c.size(); i++) { long long cur = c[i] + carry; res.z.push_back((int)(cur % 1000000)); carry = (int)(cur / 1000000); } res.z = convert_base(res.z, 6, base_digits); res.trim(); return res; } }; char s[100000]; int a[100005]; int main() { IOS int t; scanf("%d",&t); while( t-- ) { int n; scanf("%d",&n); for( int i=1;i<=n;i++ ) scanf("%d",&a[i]); sort(a+1,a+1+n); bigint c=0,d=0; int pos=-1; for( int i=1;i<=n;i++ ) { if( a[i]!=0 ) { c=a[i],pos=i; break; } } string s; s=(char)(a[pos+1]+'0'); d=a[pos+1]; for( int i=1;i<=n;i++ ) { if( i==pos || i==pos+1 ) continue; char c=a[i]+'0'; s+=c; } d.read(s); // cout<<c<<" "<<d<<endl; bigint ans=c*d; cout<<ans<<"\n"; } }
K.The Flee Plan of Groundhog
题意:给定一颗n个节点的无向树,土拨鼠在节点1的位置,橘子在节点n的位置,前t面土拨鼠往节点n移动,t秒之后土拨鼠开始逃跑,橘子开始追击土拨鼠,土拨鼠的速度是每秒走一条边,橘子的速度是每秒走两条边,求土拨鼠最远能逃多久。输出逃跑时间。
分析:我们以节点n为树根建树。
首先判断t秒内是否到了节点n,如果已经到了输出0,否则土拨鼠的初始位置是pos.
对于土拨鼠而言,肯定要尽可能跑最长链,两种走法,一种是一直远离树根跑下去,一种是先往树根跑一段距离,然后从某个节点开始往最长的叶子节点方向跑。我们将这些方案都枚举然后取个max。
#include<bits/stdc++.h> using namespace std; const int maxn=2e5+10; int n,m,t; inline int read() { int x=0;char s=getchar(); for( ;isdigit(s);x=x*10+s-48,s=getchar()); return x; } int fa[maxn],siz[maxn],d[maxn]; vector<int> g[maxn]; void dfs( int x,int f ) { fa[x]=f; siz[x]=0; d[x]=d[f]+1; for( int v:g[x] ) { if( v==f ) continue; dfs(v,x); siz[x]=max(siz[v]+1,siz[x]); } } int ans; void solve( int now,int c ) { if( c<=0 ) return; if( 2*c<=siz[now] ) { ans=max(ans,c); } else { int len=(siz[now]+c+1)/2; ans=max(ans,len); // printf("%d\n",len); } } int main() { n=read(),t=read(); for( int i=1;i<n;i++ ) { int u,v; u=read(),v=read(); g[u].push_back(v); g[v].push_back(u); } dfs(n,0); if( d[1]-d[n]<=t ) { puts("0"); return 0; } else { int now=1; while( t-- ) now=fa[now]; int c=d[now]-d[n]; int cnt=0; while( now!=n ) { solve(now,c-cnt*3); cnt++; now=fa[now]; } printf("%d\n",ans); } } /* 12 1 10 9 9 8 8 7 7 1 7 6 6 5 5 4 4 3 3 2 11 10 12 11 */