题意:求从1出发经过给定的条关键路径回到1的最短路,
注意到条边的两个端点,再加上起点1,只有这些点是关键点,其他的点都无关紧要
预处理出每两个关键点之间的最短路,然后类似于旅行者问题跑一个状压dp,讨论一下每个关键路径的两个端点转移即可
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <queue> #define mp(x, y) make_pair(x, y) using namespace std; const int N = 1e6 + 10, M = 2e5 + 10; const long long inf = 1e18; inline int read() { bool sym = 0; int res = 0; char ch = getchar(); while (!isdigit(ch)) sym |= (ch == '-'), ch = getchar(); while (isdigit(ch)) res = (res << 3) + (res << 1) + (ch ^ 48), ch = getchar(); return sym ? -res : res; } struct EDGE { int u, v, nxt, dis; } edge[N]; int n, m, B, u[N], v[N], t[N], head[N], cnt; long long dis[20][20][2][2], d[N], back[N][2], dp[N][12][2]; bool vis[N]; void add(int u, int v, int t) {edge[++cnt] = (EDGE){u, v, head[u], t}; head[u] = cnt;} void gmin(long long &x, long long y) {x = min(x, y);} priority_queue<pair<long long, int> >q; void dij(int s) { memset(d, 0x3f, sizeof(d)); memset(vis, 0, sizeof(vis)); d[s] = 0; q.push(mp(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int e = head[u]; e; e = edge[e].nxt) { int v = edge[e].v, t = edge[e].dis; if (d[u] + t < d[v]) { d[v] = d[u] + t; q.push(mp(-d[v], v)); } } } } int main() { n = read(); m = read(); B = read(); for (int i = 0; i < m; i++) { u[i] = read(); v[i] = read(); t[i] = read(); add(u[i], v[i], t[i]); add(v[i], u[i], t[i]); } for (int i = 0; i < B; i++) { dij(u[i]); for (int j = 0; j < B; j++) { dis[i][j][0][0] = d[u[j]]; dis[i][j][0][1] = d[v[j]]; } back[i][0] = d[1]; dij(v[i]); for (int j = 0; j < B; j++) { dis[i][j][1][0] = d[u[j]]; dis[i][j][1][1] = d[v[j]]; } back[i][1] = d[1]; } memset(dp, 0x3f, sizeof(dp)); dij(1); for (int i = 0; i < B; i++) { dp[1 << i][i][0] = d[v[i]] + t[i]; dp[1 << i][i][1] = d[u[i]] + t[i]; } for (int s = 1; s < 1 << B; s++) { for (int i = 0; i < B; i++) if (1 << i & s) { for (int j = 0; j < B; j++) if (!(1 << j & s)) { gmin(dp[s | 1 << j][j][1], dp[s][i][0] + dis[i][j][0][0] + t[j]); gmin(dp[s | 1 << j][j][0], dp[s][i][0] + dis[i][j][0][1] + t[j]); gmin(dp[s | 1 << j][j][1], dp[s][i][1] + dis[i][j][1][0] + t[j]); gmin(dp[s | 1 << j][j][0], dp[s][i][1] + dis[i][j][1][1] + t[j]); } } } long long ans = inf; for (int i = 0; i < B; i++) { gmin(ans, dp[(1 << B) - 1][i][0] + back[i][0]); gmin(ans, dp[(1 << B) - 1][i][1] + back[i][1]); } printf("%lld", ans); return 0; }