import numpy as np def calculate_covariance_matrix(vectors): # 补全代码 n_features = len(vectors) n_observations = len(vectors[0]) covariance_matrix = np.zeros([n_features, n_features]) means = [sum(feature) / n_observations for feature in vectors] for i in range(n_features): for j in range(i, n_features): covariance = sum( (vectors[i][k] - means[i]) * (vectors[j][k] - means[j]) for k in range(n_observations) ) / (n_observations - 1) covariance_matrix[i][j] = covariance_matrix[j][i] = covariance return covariance_matrix.tolist() # 主程序 if __name__ == "__main__": # 输入 ndarrayA = input() # 处理输入 import ast A = ast.literal_eval(ndarrayA) # 调用函数计算 output = calculate_covariance_matrix(A) # 输出结果 print(output)