import numpy as np
import math


def softmax(scores: list[float]) -> list[float]:
    e_sum = 0
    probabilities = list(scores)
    for i in range(len(scores)):
        temp =  math.exp(scores[i])
        e_sum += temp
        probabilities[i] = temp
    probabilities = list(np.round(np.array(probabilities)/e_sum, 4))
    return probabilities

if __name__ == "__main__":
    scores = np.array(eval(input()))
    print(softmax(scores))

这道题主要考softmax的定义公式,

softmax(x)=[e^xi/sum(e^xi)]

需要注意计算后保留4位小数,这里使用np.round进行保留