#include<bits/stdc++.h> using namespace std; #define INF 0x3f3f3f3f int mp[75][75]; int dp[75][75][75][75]; //dp[i][j][k][r]定义为:当前行选了k个,和能够余r的最大和 //转移方程为:dp[i][j][k][r]如果不选第j个,dp[i][j][k][r] = dp[i][j-1][k][r] //否则:dp[i][j][k][r] = dp[i][j-1][k-1][r-q]+a[i][j] (设a[i][j] % r = q) //行与行之间的关系可以通过dp[i+1][0][0][r] = max(dp[i][m][k][r])来转移 //最后答案是dp[n+1][0][0][0] int main() { int n, m, r; cin >> n >> m >> r; for(int i = 1; i <= n; i++) { for(int j = 1; j <= m; j++) { cin >> mp[i][j]; } } memset(dp, -INF, sizeof(dp)); dp[1][0][0][0] = 0; for(int i = 1; i <= n; i++) { for(int j = 1; j <= m; j++) { for(int k = 0; k <= min(j, m/2); k++) { int q = mp[i][j] % r; for(int rr = 0; rr <= r-1; rr++) { dp[i][j][k][rr] = dp[i][j-1][k][rr]; dp[i][j][k][rr] = max(dp[i][j][k][rr], dp[i][j-1][k-1][(rr - q + r) % r] + mp[i][j]); //q=a[i][j]%r } } } for(int j = 0; j < r; j++) { for(int k = 0; k <= m / 2; k++) { dp[i + 1][0][0][j] = max(dp[i + 1][0][0][j], dp[i][m][k][j]); } } } cout << dp[n + 1][0][0][0] << '\n'; }