Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Input
The first line of the input contains an integer T, the number of test cases.
For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
Sample Input
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
Sample Output
Case #1: Yes Case #2: No
题意:给定一棵树,边的颜色为白色或黑色,问是否有白边数为斐波那契数的生成树。
思路:把白边排在前面,求最小生成树可以得到白边最多的情况,把黑边排在前面,再求最小生成树可以得到白边最少的情况。判断两个数中间有没有斐波那契数。
0表示黑白,1表示白边,把白边排在前面相当于求最大生成树,把黑边排在前面相当于求最小生成树。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 1e5 + 10;
int father[N];
bool vis[N];
int n, m, tot, maxx, minn;
struct node {
int u,v,w;
}edge[N];
bool cmp1(node a, node b) { ///白边在前
return a.w > b.w;
}
bool cmp2(node a, node b) { ///黑边在前
return a.w < b.w;
}
void init() {
memset(vis, 0, sizeof(vis));
ll a = 1, b = 1;
vis[1] = 1;
while(b < N) {
ll tmp = a + b;
a = b;
b = tmp;
vis[b] = 1;
}
}
int Find(int x) {
if(x == father[x])
return x;
return father[x] = Find(father[x]);
}
void Union(int x,int y) {
int tmpx=Find(x);
int tmpy=Find(y);
if(tmpx!=tmpy)
{
father[tmpx]=tmpy;
}
}
int kruskal() {
for(int i = 1; i <= n; i++)
father[i] = i;
node now;
int ans = 0;
for(int i = 1; i <= m; ++i) {
now = edge[i];
if(Find(now.u) != Find(now.v)) {
Union(now.u, now.v);
ans += now.w;
}
}
return ans;
}
int main()
{
init();
int t, u, v, k, kcase = 0;
scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; ++i) {
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
}
sort(edge + 1, edge + m + 1, cmp1);
maxx = kruskal();
int cnt = 0;
for(int i = 1; i <= n; ++i) {
if(father[i] == i) {
cnt++;
if(cnt > 1) break;
}
}
if(cnt > 1) {
printf("Case #%d: No\n", ++kcase);
continue;
}
sort(edge + 1, edge + m + 1, cmp2);
minn = kruskal();
cnt = 0;
for(int i = 1; i <= n; ++i) {
if(father[i] == i) {
cnt++;
if(cnt > 1) break;
}
}
if(cnt > 1) {
printf("Case #%d: No\n", ++kcase);
continue;
}
// cout<<minn<<' '<<maxx<<'\n';
bool flag = 0;
for(int i = minn; i <= maxx; ++i) {
if(vis[i]) {
flag = 1;
break;
}
}
if(flag) printf("Case #%d: Yes\n", ++kcase);
else printf("Case #%d: No\n", ++kcase);
}
return 0;
}