You are given a prime number pp , nn integers a1,a2,…,ana1,a2,…,an , and an integer kk .
Find the number of pairs of indexes (i,j)(i,j) (1≤i<j≤n1≤i<j≤n ) for which (ai+aj)(a2i+a2j)≡kmodp(ai+aj)(ai2+aj2)≡kmodp .
Input
The first line contains integers n,p,kn,p,k (2≤n≤3⋅1052≤n≤3⋅105 , 2≤p≤1092≤p≤109 , 0≤k≤p−10≤k≤p−1 ). pp is guaranteed to be prime.
The second line contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤p−10≤ai≤p−1 ). It is guaranteed that all elements are different.
Output
Output a single integer — answer to the problem.
Examples
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
Note
In the first example:
(0+1)(02+12)=1≡1mod3(0+1)(02+12)=1≡1mod3 .
(0+2)(02+22)=8≡2mod3(0+2)(02+22)=8≡2mod3 .
(1+2)(12+22)=15≡0mod3(1+2)(12+22)=15≡0mod3 .
So only 11 pair satisfies the condition.
In the second example, there are 33 such pairs: (1,5)(1,5) , (2,3)(2,3) , (4,6)(4,6) .
、震惊,居然是道大水题
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=3e5+15;
ll a[maxn];
map<long long,long long>mp;
int main()
{
ll n,p,k;
cin>>n>>p>>k;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=1;i<=n;i++)
{
long long tp1=(a[i]*a[i]%p*a[i]%p*a[i]%p-k*a[i]%p+p)%p;
mp[tp1]++;
}
long long ans=0;
for(auto it=mp.begin();it!=mp.end();it++)
{
ans+=(it->second)*((it->second)-1)/2;
}
cout<<ans;
}