算法思想一:辅助数组
解题思路:
主要通过辅助数组实现链表的排序
1、遍历链表并将链表结点存储到数组 tmp 中
2、通过对 tmp 进行排序,实现链表结点的排序
3、构建新链表结点 result,遍历数组 tmp ,拼接新的返回链表
图解:
代码展示:
Python版本
class Solution: def sortInList(self , head ): # write code here tmp = [] tmp.append(head.val) # 遍历链表存储到数组中 while head.next: head = head.next tmp.append(head.val) # 数组排序 tmp.sort() # 重新构造新链表结点 result = ListNode(-1) temp = result # 遍历数组,将数组中元素添加到新的链表中 for i in tmp: tt = ListNode(i) temp.next = tt temp = temp.next return result.next
复杂度分析
时间复杂度O(NlogN):N表示链表结点数量,遍历链表O(N),数组排序(NlogN),遍历数组O(N)
空间复杂度O(N):使用额外数组占用空间O(N)
算法思想二:归并排序(递归)
解题思路:
主要通过递归实现链表归并排序,有以下两个环节:
1、分割 cut 环节: 找到当前链表中点,并从中点将链表断开(以便在下次递归 cut 时,链表片段拥有正确边界);
使用 fast,slow 快慢双指针法,奇数个节点找到中点,偶数个节点找到中心左边的节点。
找到中点 slow 后,执行 slow.next = None 将链表切断。
递归分割时,输入当前链表左端点 head 和中心节点 slow 的下一个节点 tmp(因为链表是从 slow 切断的)。
cut 递归终止条件: 当head.next == None时,说明只有一个节点了,直接返回此节点
找到中点 slow 后,执行 slow.next = None 将链表切断。
递归分割时,输入当前链表左端点 head 和中心节点 slow 的下一个节点 tmp(因为链表是从 slow 切断的)。
cut 递归终止条件: 当head.next == None时,说明只有一个节点了,直接返回此节点
2、合并 merge 环节: 将两个排序链表合并,转化为一个排序链表。
双指针法合并,建立辅助ListNode h 作为头部。
设置两指针 left, right 分别指向两链表头部,比较两指针处节点值大小,由小到大加入合并链表头部,指针交替前进,直至添加完两个链表。
返回辅助ListNode h 作为头部的下个节点 h.next。
时间复杂度 O(l + r),l, r 分别代表两个链表长度。
3、特殊情况,当题目输入的 head == None 时,直接返回None。
双指针法合并,建立辅助ListNode h 作为头部。
设置两指针 left, right 分别指向两链表头部,比较两指针处节点值大小,由小到大加入合并链表头部,指针交替前进,直至添加完两个链表。
返回辅助ListNode h 作为头部的下个节点 h.next。
时间复杂度 O(l + r),l, r 分别代表两个链表长度。
3、特殊情况,当题目输入的 head == None 时,直接返回None。
图解:
代码展示:
JAVA版本import java.util.*; /* * public class ListNode { * int val; * ListNode next = null; * } */ public class Solution { /** * * @param head ListNode类 the head node * @return ListNode类 */ public ListNode sortInList (ListNode head) { // write code here if (head == null || head.next == null) return head; // 使用快慢指针寻找链表的中点 ListNode fast = head.next, slow = head; while (fast != null && fast.next != null) { slow = slow.next; fast = fast.next.next; } ListNode tmp = slow.next; slow.next = null; // 递归左右两边进行排序 ListNode left = sortInList(head); ListNode right = sortInList(tmp); // 创建新的链表 ListNode h = new ListNode(0); ListNode res = h; // 合并 left right两个链表 while (left != null && right != null) { // left right链表循环对比 if (left.val < right.val) { h.next = left; left = left.next; } else { h.next = right; right = right.next; } h = h.next; } // 最后添加未对比的链表部分判断左链表是否为空 h.next = left != null ? left : right; return res.next; } }
复杂度分析
时间复杂度O(NlogN):N表示链表结点数量,二分归并算法O(NlogN)
空间复杂度O(1):仅使用常数级变量空间