又是DP?
好吧,或者说是博弈论,但是我不会啊。
先搞个O(n^3)的记忆化搜索,然后瞎搞好像发现两个状态几乎一样?
竟然过了样例,然后竟然A了...
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 using namespace std; 5 inline int read(){ 6 char chr=getchar(); int f=1,ans=0; 7 while(!isdigit(chr)) {if(chr=='-') f=-1;chr=getchar();} 8 while(isdigit(chr)) {ans=(ans<<3)+(ans<<1);ans+=chr-'0';chr=getchar();} 9 return ans*f; 10 }void write(int x){ 11 if(x<0) putchar('-'),x=-x; 12 if(x>9) write(x/10); 13 putchar(x%10+'0'); 14 }int n,a[10005],dp[2001][2001],s[10005];//dp[i][j]---->the last one get j coins and there're i coins left; 15 int dfs(int x,int y){ 16 if(dp[x][y]) return dp[x][y]; 17 if(y==0) return 0; 18 if(x<(y<<1)) return dp[x][y]=s[x]; 19 dp[x][y]=dfs(x,y-1); 20 dp[x][y]=max(dp[x][y],s[x]-min(dfs(x-(y<<1),(y<<1)),dfs(x-(y<<1)+1,(y<<1)-1))); 21 return dp[x][y]; 22 }int main(){n=read(); 23 for(register int i=n;i>=1;--i) a[i]=read(); 24 for(register int i=1;i<=n;++i)s[i]=s[i-1]+a[i]; 25 dfs(n,1);write(dp[n][1]); 26 return 0; 27 }