今天来看看面试中必考的线程间通信,经历过面试的都知道,手撕代码除了算法题,排序题,单例模式等之外就是线程间通信的考点了。来一起喵喵吧。
1.两个数字交替打印
1.1 自定义锁
使用volatile保证数据的可见性,避免多线程访问同一个变量;设想定义一个volatile修饰的boolean变量flag,当flag为true时,线程1打印1,同时修改flag的值,置为false,当flag为false时,线程2打印2,同时修改falg的值,置为true,依次循环即可。
package cn.alibaba.thread;
public class ThreadPrint2 {
volatile static boolean flag=true;//volatile
public static void main(String[] args) {
Thread t1=new MyThread(1);
Thread t2=new MyThread(2);
t1.start();
t2.start();
}
static class MyThread extends Thread {
int printValue;
public MyThread(int printValue) {
this.printValue = printValue;
}
@Override
public void run() {
for (int i = 0; i < 5; i++) {
if (flag) {
System.out.println("1");
} else {
System.out.println("2");
}
flag = !flag;
}
}
}
}
1.2 wait/notify/notify All
/** * @author: xingkong * @date: 2020/10/8 15:11 * @description: */
public class ThreadPrinter implements Runnable {
private final String name;
private final Object prev;
private final Object self;
private ThreadPrinter(String name, Object prev, Object self) {
this.name = name;
this.prev = prev;
this.self = self;
}
@Override
public void run() {
while (true) {
// 多线程并发,不能用if,必须使用whil循环
synchronized (prev) {
// 先获取 prev 锁
synchronized (self) {
// 再获取 self 锁
System.out.print(name);
//打印
self.notifyAll();
// 唤醒其他线程竞争self锁,注意此时self锁并未立即释放。
}
//此时执行完self的同步块,这时self锁才释放。
try {
prev.wait();
// 立即释放 prev锁,当前线程休眠,等待唤醒
/** * JVM会在wait()对象锁的线程中随机选取一线程,赋予其对象锁,唤醒线程,继续执行。 */
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public static void main(String[] args) throws Exception {
Object a = new Object();
Object b = new Object();
ThreadPrinter pa = new ThreadPrinter("A", b, a);
ThreadPrinter pb = new ThreadPrinter("B", a, b);
new Thread(pa).start();
Thread.sleep(10);
//保证初始ABC的启动顺序
new Thread(pb).start();
Thread.sleep(10);
}
}
1.3 ReentrantLock结合Condition
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ABC_Condition {
private static Lock lock = new ReentrantLock();
private static Condition A = lock.newCondition();
private static Condition B = lock.newCondition();
private static int count = 0;
static class ThreadA extends Thread {
@Override
public void run() {
try {
lock.lock();
for (int i = 0; i < 10; i++) {
while (count % 2 != 0) {
//注意这里是不等于0,也就是说在count % 3为0之前,当前线程一直阻塞状态
A.await(); // A释放lock锁
}
System.out.print("A");
count++;
B.signal();
// A执行完唤醒B线程
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
static class ThreadB extends Thread {
@Override
public void run() {
try {
lock.lock();
for (int i = 0; i < 10; i++) {
while (count % 2 != 1) {
B.await();// B释放lock锁,当前面A线程执行后会通过B.signal()唤醒该线程
}
System.out.print("B");
count++;
A.signal();// B执行完唤醒C线程
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
public static void main(String[] args) throws InterruptedException {
new ThreadA().start();
new ThreadB().start();
}
}
1.4 Semaphore信号量方式
/** * @author: xingkong * @date: 2020/10/8 15:34 * @description: */
import java.util.concurrent.Semaphore;
public class MultipleThreadRotationUsingSemaphore {
public static void main(String[] args) {
PrintABCUsingSemaphore printABC = new PrintABCUsingSemaphore();
new Thread(() -> printABC.printA()).start();
new Thread(() -> printABC.printB()).start();
}
}
class PrintABCUsingSemaphore {
private Semaphore semaPhoreA = new Semaphore(1);
private Semaphore semaPhoreB = new Semaphore(0);
//private int attempts = 0;
public void printA() {
print("A", semaPhoreA, semaPhoreB);
}
public void printB() {
print("B", semaPhoreB, semaPhoreA);
}
private void print(String name, Semaphore currentSemaphore, Semaphore nextSemaphore) {
while (true){
try {
currentSemaphore.acquire();
System.out.println(Thread.currentThread().getName() +" print "+ name);
nextSemaphore.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
2.ABC交替打印
2.1 wait/notify/notify All
public static class ThreadPrinter implements Runnable {
private String name;
private Object prev;
private Object self;
private ThreadPrinter(String name, Object prev, Object self) {
this.name = name;
this.prev = prev;
this.self = self;
}
@Override
public void run() {
int count = 10;
while (count > 0) {
// 多线程并发,不能用if,必须使用whil循环
synchronized (prev) {
// 先获取 prev 锁
synchronized (self) {
// 再获取 self 锁
System.out.print(name);//打印
count--;
self.notifyAll();// 唤醒其他线程竞争self锁,注意此时self锁并未立即释放。
}
//此时执行完self的同步块,这时self锁才释放。
try {
if (count == 0) {
// 如果count==0,表示这是最后一次打印操作,通过notifyAll操作释放对象锁。
prev.notifyAll();
} else {
prev.wait(); // 立即释放 prev锁,当前线程休眠,等待唤醒
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
public static void main(String[] args) throws Exception {
Object a = new Object();
Object b = new Object();
Object c = new Object();
ThreadPrinter pa = new ThreadPrinter("A", c, a);
ThreadPrinter pb = new ThreadPrinter("B", a, b);
ThreadPrinter pc = new ThreadPrinter("C", b, c);
new Thread(pa).start();
Thread.sleep(10);
//保证初始ABC的启动顺序
new Thread(pb).start();
Thread.sleep(10);
new Thread(pc).start();
Thread.sleep(10);
}
可以看到程序一共定义了a,b,c三个对象锁,分别对应A、B、C三个线程。
A线程最先运行,A线程按顺序申请c,a对象锁,打印操作后按顺序释放a,c对象锁,并且通过notify操作唤醒线程B。
线程B首先等待获取A锁,再申请B锁,后打印B,再释放B,A锁,唤醒C。
线程C等待B锁,再申请C锁,后打印C,再释放C,B锁,唤醒A。
看起来似乎没什么问题,但如果你仔细想一下,就会发现有问题,就是初始条件,三个线程必须按照A,B,C的顺序来启动,但是这种假设依赖于JVM中线程调度、执行的顺序。
“图片来自网络,侵权删除”
2.2 ReentrantLock结合Condition
与ReentrantLock搭配的通行方式是Condition,如下:Condition是被绑定到Lock上的,必须使用lock.newCondition()才能创建一个Condition。从上面的代码可以看出,Synchronized能实现的通信方式,Condition都可以实现,功能类似的代码写在同一行中。
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ABC_Condition {
private static Lock lock = new ReentrantLock();
private static Condition A = lock.newCondition();
private static Condition B = lock.newCondition();
private static Condition C = lock.newCondition();
private static int count = 0;
static class ThreadA extends Thread {
@Override
public void run() {
try {
lock.lock();
for (int i = 0; i < 10; i++) {
while (count % 3 != 0) {
//注意这里是不等于0,也就是说在count % 3为0之前,当前线程一直阻塞状态
A.await(); // A释放lock锁
}
System.out.print("A");
count++;
B.signal();
// A执行完唤醒B线程
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
static class ThreadB extends Thread {
@Override
public void run() {
try {
lock.lock();
for (int i = 0; i < 10; i++) {
while (count % 3 != 1) {
B.await();// B释放lock锁,当前面A线程执行后会通过B.signal()唤醒该线程
}
System.out.print("B");
count++;
C.signal();// B执行完唤醒C线程
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
static class ThreadC extends Thread {
@Override
public void run() {
try {
lock.lock();
for (int i = 0; i < 10; i++) {
while (count % 3 != 2) {
C.await();
// C释放lock锁
}
System.out.print("C");
count++;
A.signal();
// C执行完唤醒A线程
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
public static void main(String[] args) throws InterruptedException {
new ThreadA().start();
new ThreadB().start();
new ThreadC().start();
}
}
2.3 Semaphore信号量方式
Semaphore又称信号量,是操作系统中的一个概念,在Java并发编程中,信号量控制的是线程并发的数量。
public Semaphore(int permits)
其中参数permits就是允许同时运行的线程数目;
Semaphore是用来保护一个或者多个共享资源的访问,Semaphore内部维护了一个计数器,其值为可以访问的共享资源的个数。一个线程要访问共享资源,先获得信号量,如果信号量的计数器值大于1,意味着有共享资源可以访问,则使其计数器值减去1,再访问共享资源。如果计数器值为0,线程进入休眠。当某个线程使用完共享资源后,释放信号量,并将信号量内部的计数器加1,之前进入休眠的线程将被唤醒并再次试图获得信号量。
Semaphore使用时需要先构建一个参数来指定共享资源的数量,Semaphore构造完成后即是获取Semaphore、共享资源使用完毕后释放Semaphore。
import java.util.concurrent.Semaphore;
public class ABC_Semaphore {
// 以A开始的信号量,初始信号量数量为1
private static Semaphore A = new Semaphore(1);
// B、C信号量,A完成后开始,初始信号数量为0
private static Semaphore B = new Semaphore(0);
private static Semaphore C = new Semaphore(0);
static class ThreadA extends Thread {
@Override
public void run() {
try {
for (int i = 0; i < 10; i++) {
A.acquire();
// A获取信号执行,A信号量减1,当A为0时将无法继续获得该信号量
System.out.print("A");
B.release();
// B释放信号,B信号量加1(初始为0),此时可以获取B信号量
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
static class ThreadB extends Thread {
@Override
public void run() {
try {
for (int i = 0; i < 10; i++) {
B.acquire();
System.out.print("B");
C.release();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
static class ThreadC extends Thread {
@Override
public void run() {
try {
for (int i = 0; i < 10; i++) {
C.acquire();
System.out.println("C");
A.release();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) throws InterruptedException {
new ThreadA().start();
new ThreadB().start();
new ThreadC().start();
}
}
2.4 LockSupport
import java.util.concurrent.locks.LockSupport;
/** * @author: xingkong * @date: 2020/10/8 15:45 * @description: */
public class LockSupportDemo1 {
static Thread t1 = null;
static Thread t2 = null;
public static void main(String[] args) {
t1 = new Thread(() -> {
for (int i = 65; i < 91; i++) {
System.out.print((char) i);
LockSupport.unpark(t2);
LockSupport.park();
}
});
t2 = new Thread(() -> {
for (int i = 1; i < 27; i++) {
LockSupport.park();
System.out.print(i);
LockSupport.unpark(t1);
}
});
t1.start();
t2.start();
}
}
最后,大家一定要知道每种的原理,自己实操一下。理解了之后面试才能自信的写出来。当你写出来的那一刹那,你离offer又近了一步。加油。为梦想拼搏的打工人。
优质文章推荐
1.计算机网络----三次握手四次挥手
2.一篇让你彻底了解http请求报文和响应报文的结构
3.梦想成真-----项目自我介绍
4.一篇让你彻底了解HTTP 的前世今生
5.一篇让你彻底搞定HTTP方法与状态码
6.你们要的设计模式来了
7.震惊!来看《这份程序员面试手册》!!!
8.一字一句教你面试“个人简介”
9.接近30场面试分享