题目描述
Cwbc和XHRlyb生活在s市,这天他们打算一起出去旅游。
旅行地图上有n个城市,它们之间通过n-1条道路联通。
Cwbc和XHRlyb第一天会在s市住宿,并游览与它距离不超过1的所有城市,之后的每天会选择一个城市住宿,然后游览与它距离不超过1的所有城市。
他们不想住在一个已经浏览过的城市,又想尽可能多的延长旅行时间。
XHRlyb想知道她与Cwbc最多能度过多少天的时光呢?
聪明的你在仔细阅读题目后,一定可以顺利的解决这个问题!
输入描述:
第一行,两个正整数n和s,表示城市个数和第一天住宿的城市s。
接下来n-1行,每行两个整数x和y,表示城市x与城市y之间有一条双向道路。
输出描述:
第一行,一个非负整数表示答案。
题解
树形dp,设dp[N][0]为不选此节点子树最大天数,dp[N][1]为选此节点子树最大天数
有dp转移方程
dp[x][1]+=dp[i][0]; dp[x][0]+=max(dp[i][1],dp[i][0]);
答案就是dp[s][1]
附代码
#include<bits/stdc++.h> using namespace std; #define fi first #define se second #define pb push_back #define mp make_pair #define lowbit(x) x&(-x) typedef long long ll; typedef pair<int,int> pii; typedef pair<ll, ll> pll; const int N = 5e5+5; const ll mod = 1e9+7; const int INF = 0x3f3f3f3f; const double eps =1e-9; const double PI=acos(-1.0); const int dir[4][2]={-1,0,1,0,0,-1,0,1}; const int exdir[4][2]={1,1,1,-1,-1,1,-1,-1}; ll qpow(ll x,ll y){ ll ans=1,t=x; while(y>0){ if(y&1)ans*=t,ans%=mod; t*=t,t%=mod; y>>=1; } return ans%mod; } int dp[N][2]; vector<int>g[N]; void dfs(int x,int fa){ for(int i:g[x]){ if(i!=fa){ dfs(i,x); dp[x][0]+=max(dp[i][1],dp[i][0]); dp[x][1]+=dp[i][0]; } } dp[x][1]++; } void solve(){ int n,s;cin>>n>>s; for(int i=1;i<n;i++){ int x,y;cin>>x>>y; g[x].pb(y),g[y].pb(x); } dfs(s,0); cout<<dp[s][1]; } int main(){ ios::sync_with_stdio(0); cin.tie(0);cout.tie(0); //int t;cin>>t; //while(t--)solve(),cout<<'\n'; solve(); return 0; }