引用计数法

图片说明
算法思想:
每个对象在创建的时候,就给这个对象绑定一个计数器。每当有一个引用指向该对象时,计数器加一;每当有一个指向它的引用被删除时,计数器减一。这样,当没有引用指向该对象时,该对象死亡,计数器为0,这时就应该对这个对象进行垃圾回收操作。

核心思想:
为每个对象额外存储一个计数器 RC ,根据 RC 的值来判断对象是否死亡,从而判断是否执行 GC 操作。

优点:
1.简单
2.计算代价分散
3.“幽灵时间”短(幽灵时间指对象死亡到回收的这段时间,处于幽灵状态)

复制算法

图片说明
复制算法动态图:
图片说明
算法思想
该算法将内存平均分成两部分,然后每次只使用其中的一部分,当这部分内存满的时候,将内存中所有存活的对象复制到另一个内存中,然后将之前的内存清空,只使用这部分内存,循环下去。

注意:
这个算法与标记-整理算法的区别在于,该算法不是在同一个区域复制,而是将所有存活的对象复制到另一个区域内。

优点
1.实现简单
2.不产生内存碎片
缺点
每次运行,总有一半内存是空的,导致可使用的内存空间只有原来的一半。

标记清除算法

图片说明
算法思想:
为每个对象存储一个标记位,记录对象的状态(活着或是死亡)。分为两个阶段,一个是标记阶段,这个阶段内,为每个对象更新标记位,检查对象是否死亡;第二个阶段是清除阶段,该阶段对死亡的对象进行清除,执行 GC 操作。

优点
1.最大的优点是,相比于引用计数法,标记—清除算法中每个活着的对象的引用只需要找到一个即可,找到一个就可以判断它为活的。

2.这个算法相比于引用计数法更全面,在指针操作上也没有太多的花销。更重要的是,这个算法并不移动对象的位置(后面俩算法涉及到移动位置的问题)。

3.不需要额外的空间

缺点
1.很长的幽灵时间,判断对象已经死亡,消耗了很多时间,这样从对象死亡到对象被回收之间的时间过长。

2.每个活着的对象都要在标记阶段遍历一遍;所有对象都要在清除阶段扫描一遍,因此算法复杂度较高。

3.两次扫描严重浪费时间,会产生内存碎片

标记整理(压缩)算法

图片说明

算法思想
标记-整理法是标记-清除法的一个改进版。同样,在标记阶段,该算法也将所有对象标记为存活和死亡两种状态;不同的是,在第二个阶段,该算法并没有直接对死亡的对象进行清理,而是将所有存活的对象整理一下,放到另一处空间,然后把剩下的所有对象全部清除。这样就达到了标记-整理的目的。

优点
该算法不会像标记-清除算法那样产生大量的碎片空间。
缺点
如果存活的对象过多,整理阶段将会执行较多复制操作,导致算法效率降低。

总结

1.不同算法有不同的优点和缺点,除了引用计数法不常用外,其他三种算法在现在的java虚拟机上也是很常见的,间接说明了这几个经典算法还是有其适用性的。

2.理解 JVM 的 GC 算法能够帮助我们更好地理解java的垃圾回收机制,例如,在 JVM 的年轻代使用的是复制算法来进行垃圾回收(由于其中的存活对象比例较小);而在老年代,使用的却是标记-清除法或标记-整理法(由于每次回收都只回收少量对象)

内存效率:复制算法>标记清除算法>标记压缩算法(时间复杂度)
内存整齐度:复制算法=标记压缩算法>标记清除算法
内存利用率:标记压缩算法=标记清除算法>复制算法

思考

难道就没有一个最优算法
答案:没有,没有最好的算法,只有一个最合适的算法-----》GC:分代收集算法

年轻代:
存活率低
复制算法

老年代
区域大,存活率大
标记清除(内存碎片不是太多)+标记压缩混合实现