S o l u t i o n \mathcal{Solution} Solution

O ( N 2 ) <mtext>   </mtext> O(N^2) \ 暴力 O(N2) : O ( N ) O(N) O(N) 枚举 起点, O ( N ) O(N) O(N) 枚举以该起点为左端点的区间, 计算即可.

对一个区间 [ l , r ] [l, r] [l,r], 设 S i S_i Si 表示前缀和,

需要满足以下条件才能对答案贡献 1 1 1 :

  1. S r S l 1 r l + 1 &gt; = L \frac{S_r-S_{l-1}}{r-l+1}&gt;=L rl+1SrSl1>=L,
  2. S r S l 1 r l + 1 &lt; = R \frac{S_r-S_{l-1}}{r-l+1}&lt;=R rl+1SrSl1<=R.

满足上述条件的总数量即为 A n s Ans Ans.
满足 S r S l 1 r l + 1 &gt; = L \frac{S_r-S_{l-1}}{r-l+1}&gt;=L rl+1SrSl1>=L, 的数量为 n u m 1 num_1 num1,
满足 S r S l 1 r l + 1 &gt; R \frac{S_r-S_{l-1}}{r-l+1}&gt;R rl+1SrSl1>R (此地不等价于 S r S l 1 r l + 1 &gt; = R + 1 \frac{S_r-S_{l-1}}{r-l+1}&gt;=R+1 rl+1SrSl1>=R+1), 数量为 n u m 2 num_2 num2 .
A n s = n u m 1 n u m 2 Ans =num_1-num_2 Ans=num1num2 . (相当于一个简单的容斥)

所以只需考虑 n u m 1 , n u m 2 num_1, num_2 num1,num2 如何求即可.


化简 条件1: S r S l 1 r l + 1 &gt; = L \frac{S_r-S_{l-1}}{r-l+1}&gt;=L rl+1SrSl1>=L

S r S l 1 &gt; = L ( r l + 1 ) S_r-S_{l-1}&gt;=L(r-l+1) SrSl1>=L(rl+1)
S r S l 1 &gt; = L r L l + L <mtext>         </mtext> . S_r-S_{l-1}&gt;=Lr-Ll+L\ \ \ \ \ \ \ . SrSl1>=LrLl+L       .

将关于 l l l , 关于 r r r 的项 分开.

S r L r &gt; = S l 1 L ( l 1 ) S_r-Lr&gt;=S_{l-1}-L(l-1) SrLr>=Sl1L(l1)

B i = S i L i B_i=S_i-L*i Bi=SiLi,
n u m 1 = ( B <mtext>   </mtext> ) num_1 = (B\ 的非严格顺序数对数量) num1=(B ).

同理 n u m 2 num_2 num2 凭此方法求出, 进而 A n s Ans Ans 也就可以得到了.


A d d i t i o n \mathcal{Addition} Addition

当以 L L L 为参数时, 求 { B i } \{B_i\} {Bi} 数组的 非严格顺序数对 可转换为求 { B i } \{B_i\} {Bi}严格逆序数对 t m p tmp tmp, 再使用 总数对数 减去 t m p tmp tmp.
当以 R R R 为参数时, 求 { B i } \{B_i\} {Bi} 数组的 严格顺序数对 可转换为求 { B i } \{-B_i\} {Bi}严格逆序数对.

求逆序对时 下标从 0 开始 . 因为下标 l 1 [ 0 , N 1 ] l-1∈ [0, N-1] l1[0,N1],.

进行多次归并排序时一定要清空数组, 因为 B [ 0 ] B[0] B[0] 的值会改变.


C o d e \mathcal{Code} Code

#include<bits/stdc++.h>
#define reg register

typedef long long ll;
const int maxn = 500005;

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ flag = -1, c = getchar(); break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

int N;
int L;
int R;
int A[maxn];
ll B[maxn];
ll sum[maxn];
int tmp[maxn];

ll mergesort(int l, int r){
        if(r <= l) return 0;
        int mid = l+r >> 1;
        int t1 = l, t2 = mid+1, t3 = l;
        ll s = mergesort(l, mid) + mergesort(mid+1, r);
        while(t1 <= mid && t2 <= r)
                if(B[t2] < B[t1]){ 
                        s += mid - t1 + 1;
                        tmp[t3 ++] = B[t2 ++];
                }else   tmp[t3 ++] = B[t1 ++];
        while(t1 <= mid)tmp[t3 ++] = B[t1 ++];
        while(t2 <= r)  tmp[t3 ++] = B[t2 ++];
        for(reg int i = l; i <= r; i ++) B[i] = tmp[i];
        return s;
}

int main(){
        freopen("game.in", "r", stdin);
        freopen("game.out", "w", stdout);
        N = read(); L = read(); R = read();
        ll Fen_mu = (1+1ll*N)*N >> 1;
        for(reg int i = 1; i <= N; i ++) A[i] = read(), sum[i] = A[i] + sum[i-1];
        for(reg int i = 1; i <= N; i ++) B[i] = sum[i] - L*i;
        ll num_1 = mergesort(0, N);
        for(reg int i = 1; i <= N; i ++) B[i] = R*i - sum[i];
        B[0] = 0;
        ll num_2 = mergesort(0, N);
        ll Ans = (Fen_mu-num_1) - num_2;
        if(!Ans) printf("0\n");
        else if(Ans == Fen_mu) printf("1\n");
        else{
                ll gcd = std::__gcd(Ans, Fen_mu);
                printf("%lld/%lld\n", Ans/gcd, Fen_mu/gcd);
        }
        return 0;
}