一、集成算法

1.概述

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林,梯度提升树(GBDT),Xgboost等集成算法的身影也随处可见,可见其效果之好,应用之广

集成算法的目标

集成算***考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现

  • 多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking

  • 装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林

  • 提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树

2. sklearn中的集成算法

  • sklearn中的集成算法模块ensemble
类的功能
ensemble.AdaBoostClassifier AdaBoost分类
ensemble.AdaBoostRegressor Adaboost回归
ensemble.BaggingClassifier 装袋分类器
ensemble.BaggingRegressor 装袋回归器
ensemble.ExtraTreesClassifier Extra-trees分类(超树,极端随机树)
ensemble.ExtraTreesRegressor Extra-trees回归
ensemble.GradientBoostingClassifier 梯度提升分类
ensemble.GradientBoostingRegressor 梯度提升回归
ensemble.IsolationForest 隔离森林
ensemble.RandomForestClassifier 随机森林分类
ensemble.RandomForestRegressor 随机森林回归
ensemble.RandomTreesEmbedding 完全随机树的集成
ensemble.VotingClassifier 用于不合适估算器的软投票/多数规则分类器
  • 集成算法中,有一半以上都是树的集成模型,可以想见决策树在集成中必定是有很好的效果

二、随机森林分类器(RandomForestClassifier)

class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)

  • 随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。

  • 随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决原则来决定集成评估器的结果.对任何一个样本而言,平均或多数表决原则下,随机森林才会判断错误.假设建立了25棵树,一棵树判断错误的可能性为0.2(ε\varepsilon),那13棵树以上都判断错误的可能性是:
    erandom_forest=i=1325C25iεi(1ε)25i=0.000369e_{random\_forest} = \sum_{i=13}^{25}C_{25}^i\varepsilon^i(1-\varepsilon)^{25-i}=0.000369
    其中,i是判断错误的次数,也是判错的树的数量,ε\varepsilon是一棵树判断错误的概率,(1-ε\varepsilon)是判断正确的概率,共判对25-i次。采用组合,是因为25棵树中,有任意i棵都判断错误
    可见,判断错误的几率非常小,这让随机森林在红酒数据集上的表现远远好于单棵决策树

1. 重要参数

① 控制基评估器的参数

参数 含义
criterion 不纯度的衡量指标,有基尼系数和信息熵两种选择
max_depth 树的最大深度,超过最大深度的树枝都会被剪掉
min_samples_leaf 一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生
min_samples_split 一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生
max_features max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃,默认值为总特征个数开平方取整
min_impurity_decrease 限制信息增益的大小,信息增益小于设定数值的分枝不会发生
  • 单个决策树的准确率越高,随机森林的准确率也会越高,因为装袋法是依赖于平均值或者少数服从多数原则来决定集成的结果的

② n_estimators

  • 这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡
  • n_estimators的默认值在现有版本的sklearn中是100.调参倾向:要更大的n_estimators

③ random_state

  • 随机森林中的random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树
  • 当random_state固定时,随机森林中生成是一组固定的树,但每棵树依然是不一致的,这是用”随机挑选特征进行分枝“的方法得到的随机性。并且我们可以证明,当这种随机性越大的时候,袋装法的效果一般会越来越好。用袋装法集成时,基分类器应当是相互独立的,是不相同的

  • 但这种做法的局限性是很强的,当我们需要成千上万棵树的时候,数据不一定能够提供成千上万的特征来让我们构 筑尽量多尽量不同的树。因此,除了random_state。我们还需要其他的随机性

④ bootstrap & oob_score

  • bootstrap

用来控制抽样技术的参数

  • bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False
  • 有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能被忽略,一般来说,自助集大约平均会包含63%的原始数据。因为每一个样本被抽到某个自助集中的概率为:约等于0.632,因此,会有约37%的训练数据被浪费掉,没有参与建模,这些数据被称为袋外数据(out of bag data,简写为oob)

  • 除了我们最开始就划分好的测试集之外,这些数据也可以被用来作为集成算法的测试集。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉落在袋外,自然也就无法使用oob数据来测试模型了

  • oob_score

  • 如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True
  • 训练完毕之后,我们可以用随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果

2. 重要属性和接口

① 属性

  • estimators:查看森林中树的状况

  • oob_score_:查看在袋外数据上测试的结果

  • feature_importances_:属性重要性

② 接口

  • 常用接口:apply, fit, predict和score

  • predict_proba:返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类就返回几个概率

    • 如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类

3. Bagging的另一个必要条件

基分类器的判断准确率至少要超过随机分类器,即时说,基分类器的判断准确率至少要超过50%

三、随机森林回归器(RandomForestRegressor)

class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’mse’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False)

  • 所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标,参数Criterion不一致

1. 参数

criterion

  • 'mse':均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失
  • “friedman_mse”:费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
  • "mae":绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失
  • MSE=1Ni=1N(fiyi)2MSE = \frac{1}{N}\sum_{i=1}^N(f_i-y_i)^2,其中N是样本数量,i是每一个数据样本,fif_i是模型回归出的数值,所以MSE的本质,其实是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。

  • 然而,回归树的接口score返回的是R平方,并不是MSE。R平方被定义如下:
    R2=1μυR^2 = 1 - \frac {\mu}{\upsilon}
    μ=i=1N(fiyi)2\mu = \sum_{i=1}^N(f_i-y_i)^2
    υ=i=1N(yiy^)2\upsilon = \sum_{i=1}^N(y_i-\hat y)^2
    其中u是残差平方和(MSE ×\times N),υ\upsilon是总平方和,N是样本数量,ii是每一个数据样本,fif_i是模型回归出的数值,yiy_i是样本点ii实际的数值标签。y^\hat y是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正

  • 值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

2.属性与接口

最重要的属性和接口,都与随机森林的分类器相一致,还是apply, fit, predict和score最为核心。值得一提的是,随机森林回归并没有predict_proba这个接口,因为对于回归来说,并不存在一个样本要被分到某个类别的概率问题,因此没有predict_proba这个接口