思路:约数和定理
关于二分法:

Code:

#include <bits/stdc++.h>

#define mod 9901
#define rep(i,a,b) for (int i=a; i<=b; i++)
using namespace std;

int qpow (int a, int b) {
	int ans = 1;
	a %= mod;
	while (b) {
		if (b & 1) {
			ans = ans * a % mod;
		}
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}

/** * getsum:求 1 + p + p^2 + p^3 + ... + p^k */

//版本1 奇数与偶数做相应的操作
int getsum (int p, int k) {
	if (p == 0) return 0;
	if (k == 0) return 1;
	if (k & 1) return (qpow(p, (k >> 1) + 1) + 1) * getsum(p, k >> 1) % mod;
	return ( (qpow(p, (k >> 1) + 1) + 1) * getsum(p, (k >> 1) - 1) % mod + qpow(p, k >> 1) ) % mod;
}

//版本2 遇到偶数统统转为奇数项再操作
int getsum2 (int p, int k) {
	if (p == 0) return 0;
	if (k == 0) return 1;
	if (k & 1) return (qpow(p, (k >> 1) + 1) + 1) * getsum2(p, k >> 1) % mod;
	return (p % mod * getsum2(p, k - 1) + 1) % mod; //把奇数项和划归为求偶数项的子问题
}

int solve (int A, int B) {
	int res = 1, k;
	rep(i, 2, A) {
		if (A % i == 0) {
			k = 0;
			while (A % i == 0) {
				k++;
				A /= i;
			}
			res = res * getsum2(i, k * B) % mod;
		}
	}
	if (A == 0) res = 0;
	return res;
}

int main() {
	int A, B;
	scanf("%d%d", &A, &B);
	printf("%d\n", solve(A, B));
	return 0;
}