感谢 JR 赞助


S O L U T I O N \mathbb{SOLUTION} SOLUTION

F ( x ) = y F(x) = y F(x)=y, 沿着 F [ F ( x ) ] = x F[F(x)] =-x F[F(x)]=x 这个规则推

F ( x ) = y <mtext>                               </mtext> X F(x)=y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathcal{X} F(x)=y                             X
<mtext>           </mtext> \ \ \ \ \ \ \ \ \ ↓          
F ( y ) = F [ F ( x ) ] = x F(y) = F[F(x)] = -x F(y)=F[F(x)]=x
<mtext>                     </mtext> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ↓                    
F ( x ) = F [ F ( y ) ] = y F(-x)=F[F(y)] = -y F(x)=F[F(y)]=y
<mtext>                     </mtext> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ↓                    
F ( y ) = F [ F ( x ) ] = x F(-y) = F[F(-x)] = x F(y)=F[F(x)]=x
<mtext>                     </mtext> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ↓                    
F ( x ) = F [ F ( y ) ] = y <mtext>          </mtext> Y F(x)=F[F(-y)]=y \ \ \ \ \ \ \ \ \mathcal{Y} F(x)=F[F(y)]=y        Y

会发现 X \mathcal{X} X式 又等价于 Y \mathcal{Y} Y式,
得出结论: 对两个正整数 x , y x,y x,y, F ( x ) = ± <mtext>   </mtext> y F(x)=±\ y F(x)=± y, 只会影响到 F ( x ) , F ( y ) , F ( x ) , F ( y ) F(x), F(y), F(-x), F(-y) F(x),F(y),F(x),F(y)四个函数的值.

不考虑负数的存在, 原问题转换为
1 , 2 , 3 , . . , R 1, 2, 3, .., R 1,2,3,..,R 序列中两两配对的方案数,
F ( x ) = ± <mtext>   </mtext> y F(x) = ± \ y F(x)=± y 是两种不同的方案, 即一次配对有两种不同的选择,
A n s = 2 R / 2 ( N 1 ) ( N 3 ) . . . 1 ∴ Ans = 2^{R/2}*(N-1)*(N-3)...*1 Ans=2R/2(N1)(N3)...1


C O D E \mathbb{CODE} CODE

#include<bits/stdc++.h>
#define reg register

const int maxn = 10000007;

int L;
int R;
int Ans;

const int mod = 666623333;

int KSM(int a, int b){
        int s = 1;
        while(b){
                if(b & 1) s = 1ll*s*a % mod;
                a = 1ll*a*a % mod;
                b >>= 1;
        }
        return s;
}

int main(){
        scanf("%d%d", &L, &R); 
        if(L != -R) printf("0\n"); 
        else if((L&1) || (R&1)) printf("0\n"); 
        else{ 
                Ans = KSM(2, R/2); 
                for(reg int i = 3; i <= R; i += 2){ 
                        Ans = 1ll*Ans*i % mod; 
                } 
                printf("%d\n", Ans);
        }
        return 0;
}