直线检测
霍夫直线变换
百度百科
前提条件:边缘检测已经完成
平面空间→极坐标
相关代码
import cv2 as cv
import numpy as np
def line_detection(image):
""" 自己写 :param image: :return: """
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# apertureSize 梯度窗口大小
edges = cv.Canny(gray, 50, 150, apertureSize=3)
# 获取直线 参数: 边缘 半径步长 偏转1° 低值
lines = cv.HoughLines(edges, 1, np.pi / 180, 200)
for line in lines:
# print(type(lines)) 查看类型
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 1000 * (-b))
y1 = int(y0 + 1000 * a)
x2 = int(x0 - 1000 * (-b))
y2 = int(y0 - 1000 * a)
# 参数:待绘图对象 起点 终点 颜色 灰度宽度
cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv.imshow("image-lines", image)
def line_detect_possible_demo(image):
""" 使用api直接获取 :param image: :return: """
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray, 50, 150, apertureSize=3)
# minLineLength 最小的线长; maxLineGap 最大的线直接的间隔
lines = cv.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=50, maxLineGap=10)
for line in lines:
# print(type(line)) 查看类型
# 获取起点和终点
x1, y1, x2, y2 = line[0]
cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv.imshow("line_detect_possible_demo", image)
src = cv.imread("main.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
line_detection(src)
line_detect_possible_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()